Question #208959

f A and B are any two events of a sample space S, then P.A/ D P.A and B/ 􀀀 P.B/.


1
Expert's answer
2021-06-21T14:39:57-0400

a)

P(AB)=P(AB)P(B)P(A|B)=\dfrac{P(A\cap B)}{P(B)}

=P(A)+P(B)P(AB)P(B)=\dfrac{P(A)+P(B)-P(A\cup B)}{P(B)}

=P(A)+P(B)(1P(AB))P(B)=\dfrac{P(A)+P(B)-(1-P(\overline{A}\cap \overline{B}))}{P(B)}

=P(A)+P(B)1+P(AB)P(B)=\dfrac{P(A)+P(B)-1+P(\overline{A}\cap \overline{B})}{P(B)}

P(AB)0P(\overline{A}\cap \overline{B})\geq0

Hence


P(AB)P(A)+P(B)1P(B)P(A|B)\geq\dfrac{P(A)+P(B)-1}{P(B)}

The statement is True.


b)


P(AB)=P(A)P(AB)P(A\cap B)=P(A)-P(A\cap\overline{B})

Then


P(AB)=P(A)P(AB), does not holdP(A\cap B)=P(A)-P(\overline{A}\cap\overline{B}), \text{ does not hold}

The statement is True.


c)


P(AB)=1P(AB)P(A\cup B)=1-P(\overline{A}\cap \overline{B})

If AA and BB are independent, then


P(AB)=P(A)P(B)P(\overline{A}\cap \overline{B})=P(\overline{A})P(\overline{B})

Hence


P(AB)=1P(AB)=1P(A)P(B)P(A\cup B)=1-P(\overline{A}\cap \overline{B})=1-P(\overline{A})P(\overline{B})

The statement P(AB)=P(A)P(B),P(\overline{A}\cap \overline{B})=P(\overline{A})P(\overline{B}), if AA and BB are independent, is True.


d) Unless AA and BB are mentioned as independent, P(AB)P(\overline{A}\cap \overline{B}) cannot be written as P(A)P(B).P(\overline{A})P(\overline{B}).

The statement P(AB)=P(A)P(B),P(\overline{A}\cap \overline{B})=P(\overline{A})P(\overline{B}), if AA and BB are disjoint, is False.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS