If X is a random variable with Poisson distribution satisfying P(X=0) = P(X=1), calculate E(X).
"P(X=x) = \\frac{e^{-\u03bb}\u03bb^x}{x!} \\\\\n\nx=0,1,2,\u2026 \\\\\n\nE(x) = Var(x)= \u03bb \\\\\n\nP(X=0)=P(X=1) \\\\\n\n\\frac{e^{-\u03bb}\u03bb^0}{0!} = \\frac{e^{-\u03bb}\u03bb^1}{1!} \\\\\n\n\u03bb=1 \\\\\n\nE(x) = \u03bb=1"
Comments
Leave a comment