If X is a random variable with Poisson distribution satisfying P(X=0) = P(X=1), calculate E(X).
P(X=x)=e−λλxx!x=0,1,2,…E(x)=Var(x)=λP(X=0)=P(X=1)e−λλ00!=e−λλ11!λ=1E(x)=λ=1P(X=x) = \frac{e^{-λ}λ^x}{x!} \\ x=0,1,2,… \\ E(x) = Var(x)= λ \\ P(X=0)=P(X=1) \\ \frac{e^{-λ}λ^0}{0!} = \frac{e^{-λ}λ^1}{1!} \\ λ=1 \\ E(x) = λ=1P(X=x)=x!e−λλxx=0,1,2,…E(x)=Var(x)=λP(X=0)=P(X=1)0!e−λλ0=1!e−λλ1λ=1E(x)=λ=1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment