Answer to Question #204966 in Statistics and Probability for Sajid

Question #204966

Let Y = |Z|, where Z ∼ N (0, 1) be a discrete random variable with the following PMF: (i) Find E(Y ) and V ar(Y ). (ii) Find V ar(Y ). (iii) Find the CDF and PDF of Y . 


1
Expert's answer
2022-01-11T17:28:21-0500

The folded normal distribution is a probability distribution related to the normal distribution. Given a normally distributed random variable XX  with mean μμ  and variance σ2,σ^2, the random variable Y=XY = |X| has a folded normal distribution. 

The mean of the folded distribution is

μY=σ2πeμ2/(2σ2)+μ[12Φ(μσ)]\mu_Y=\sigma\sqrt{\dfrac{2}{\pi}}e^{-\mu^2/(2\sigma^2)}+\mu\big[1-2\Phi(-\dfrac{\mu}{\sigma})\big]

Given ZN(0,1),Y=Z.Z\sim N(0, 1), Y=|Z|. Then μ=0,σ=1\mu=0, \sigma=1


μY=12πe0+0[12Φ(0)]=2π\mu_Y=1\sqrt{\dfrac{2}{\pi}}e^{-0}+0\big[1-2\Phi(-0)\big]=\sqrt{\dfrac{2}{\pi}}

(i)

E(Y)=μY=2πE(Y)=\mu_Y=\sqrt{\dfrac{2}{\pi}}


(ii)

The variance is expressed in terms of the mean:


σY2=μ2+σ2μY2\sigma_Y^2=\mu^2+\sigma^2-\mu_Y^2

Given ZN(0,1),Y=Z.Z\sim N(0, 1), Y=|Z|. Then μ=0,σ=1\mu=0, \sigma=1

σY2=02+12(2π)2=12π=π2π\sigma_Y^2=0^2+1^2-(\sqrt{\dfrac{2}{\pi}})^2=1-\dfrac{2}{\pi}=\dfrac{\pi-2}{\pi}

(iii)

The probability density function (PDF) is given by


fY(y;μ,σ2)=12πσ2e(y2μ2)/(2σ2)f_Y(y; \mu, \sigma^2)=\dfrac{1}{\sqrt{2\pi \sigma^2}}e^{-(y^2-\mu^2)/(2\sigma^2)}

+12πσ2e(y2+μ2)/(2σ2)+\dfrac{1}{\sqrt{2\pi \sigma^2}}e^{-(y^2+\mu^2)/(2\sigma^2)}

for y0,y ≥ 0, and everywhere else.

Given ZN(0,1),Y=Z.Z\sim N(0, 1), Y=|Z|. Then


fY(y;0,1)=12π(1)2e(y202)/(2(1)2)f_Y(y; 0, 1)=\dfrac{1}{\sqrt{2\pi(1)^2}}e^{-(y^2-0^2)/(2(1)^2)}

+12π(1)2e(y2+02)/(2(1)2)+\dfrac{1}{\sqrt{2\pi(1)^2}}e^{-(y^2+0^2)/(2(1)^2)}

fY(y;0,1)=2πey2/2f_Y(y; 0, 1)=\sqrt{\dfrac{2}{\pi}}e^{-y^2/2}

for y0,y ≥ 0, and everywhere else.

In our case Y=ZY=|Z|  follows a half-normal distribution. 

The cumulative distribution function (CDF) is given by


FY(y;0,1)=0y112πex2/(21)dxF_Y(y;0,1)=\displaystyle\int_{0}^y\dfrac{1}{1}\sqrt{\dfrac{2}{\pi}}e^{-x^2/(2\cdot1)}dx

FY(y;0,1)=2π0y/2ez2dz=erf(y2)F_Y(y;0,1)=\dfrac{2}{\sqrt{\pi}}\displaystyle\int_{0}^{y/\sqrt{2}}e^{-z^2}dz=\text{erf}(\dfrac{y}{\sqrt{2}})

where erf is the error function.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment