Question #204730

 If X has uniform distribution over [0,1], find the density function and distribution function of Y D 3X: Identify the distribution of Y


1
Expert's answer
2021-06-11T16:34:21-0400

Solution:

XU[0,1]X\sim U[0,1]

Y=3XX=Y3Y=3X \\\Rightarrow X=\dfrac Y3

P(Yr)=P[0Xr3]=r3P(Y\le r)=P[0\le X\le \dfrac r3]=\dfrac r3 ...(i)

As 0<x<1,0<Y3<10<x<1, 0<\dfrac Y3<1

0<Y<3\Rightarrow 0<Y<3

Now, differentiating (i) to get its PDF.

fY(t)=(t3)=13f_Y(t)=(\dfrac t3)'=\dfrac 13

Thus, distribution function:

P(Yr)={r3,0<r<3                         0,   otherwiseP(Y\le r)=\{\dfrac r3, 0<r<3 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0,\ \ \ otherwise

And density function:

fY(t)=13;0<t<3                0,   otherwisef_Y(t)=\dfrac 13;0<t<3 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0,\ \ \ otherwise


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS