Answer to Question #203888 in Statistics and Probability for Ali

Question #203888

Q(1) [10 Marks] [CLO2,C3] (a) The time required, in hours, to repair a car is a r.v. X with pdf fX(x) = c(4x − x 2 ), where 0 ≤ x ≤ 4. (i) Find the value of the constant c. (ii) Find the probability that for a car which arrives now at the garage, the amount of time needed to get repaired will be (a) at least one but less than three hours; (b) more than two hours.

(b) Let X be a r.v. whose pdf is: fX(x) = √ 1 2π exp ( − (x ^2) /2 ) , where −∞ < x < ∞. Determine the conditional pdf fX(x||x| ≤ 1). 


1
Expert's answer
2021-06-07T15:41:35-0400

i.

04c(4xx2)dx=1\int_0^4c(4x-x^2)dx=1

c(2x213x3)04=1c(2x^2-\frac{1}{3}x^3)|_0^4=1

c(32643)=1c(32-\frac{64}{3})=1

322113=1c32-21\frac{1}{3}=\frac{1}{c}

323=1c\frac{32}{3}=\frac{1}{c}

32c=332c=3

c=332c=\frac{3}{32}

iia. P(1x<3)P(1\le x<3)

P(1x<3)=13332(4xx2)dxP(1\le x<3)=\int_1^3\frac{3}{32}(4x-x^2)dx

=332(2x213x3)13=\frac{3}{32}(2x^2-\frac{1}{3}x^3)|_1^3

=332[(18273)(213)]=\frac{3}{32}[(18-\frac{27}{3})-(2-\frac{1}{3})]

=332(953)=\frac{3}{32}(9-\frac{5}{3})

=332×223=\frac{3}{32}\times\frac{22}{3}

=1116=\frac{11}{16}

iib. P(x>2)P(x>2)

P(x>2)=24332(4xx2)dxP(x>2)=\int_2^4\frac{3}{32}(4x-x^2)dx

=332(2x213x3)24=\frac{3}{32}(2x^2-\frac{1}{3}x^3)|_2^4

=332[(32643)(883)]=\frac{3}{32}[(32-\frac{64}{3})-(8-\frac{8}{3})]

=332(323163)=\frac{3}{32}(\frac{32}{3}-\frac{16}{3})

=332×163=\frac{3}{32}\times\frac{16}{3}

=12=\frac{1}{2}

b. The pdf is not clear but it looks like a standard normal distribution

fX(xx1)=f(X(x)f(x)fX(x||x| ≤ 1)=\frac{f(X(x)}{f(x)} . |x|≤ 1

<x<x1=1x1-\infin<x<\infin\cap|x|\le 1=-1\le x\le 1

f(x)=1112πe(x22)dxf(x)=\int_{-1}^1\frac{1}{\sqrt{2\pi}}e^{(-\frac{x^2}{2})} dx

Which is equivalent to P(1Z1)P(-1\le Z\le 1)

From Z tables or excel formula =NORM.S.DIST(1,TRUE)-NORM.S.DIST(-1,TRUE)),P(Z1)P(Z1)=0.682689492P(Z\le1)-P(Z\le -1)=0.682689492

Thus,

fX(xx1)=12πe(x22)0.682689492fX(x||x| ≤ 1)=\frac{\frac{1}{\sqrt{2\pi}}e^{(-\frac{x^2}{2})}}{0.682689492} ,1x1-1\le x \le 1

Simplify by converting 0.682689492 as a fraction

0.682689492=1706723732500000000.682689492=\frac{170672373}{250000000}

fX(xx1)=19531252132ex22170672373π,1x1fX(x||x| ≤ 1)=\dfrac{1953125{\cdot}2^\frac{13}{2}\mathrm{e}^{-\frac{x^2}{2}}}{170672373\sqrt{{\pi}}},-1\le x \le 1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment