Question #203755

Show that the adjusted sample variance is a consistent estimator of the true variance


1
Expert's answer
2021-08-10T11:12:52-0400

Solution:

Let X1,X2XnX_{1}, X_{2} \ldots \ldots \ldots X_{n} be the independent observations from a population with mean μ\mu and variance σ2\sigma^{2}

E(Xi)=μ,Var(Xi)=σ2E(X2)=σ2+μ2Var(X)=E(X2)[E(X)]2E(Xˉ2)=σ2n+μ2E\left(X_{i}\right)=\mu, \operatorname{Var}\left(X_{i}\right)=\sigma^{2} \\E\left(X^{2}\right)=\sigma^{2}+\mu^{2} \\\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2} \\E\left(\bar{X}^{2}\right)=\frac{\sigma^{2}}{n}+\mu^{2}

Now, we show that

E(s2)=E(i=1n(XiXˉ)2n1)=σ2{E}\left(s^{2}\right)={E}\left(\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}\right)=\sigma^{2}

\sum is going from 1 to n

E((XiXˉ)2)=E(Xi22XˉXi+nXˉ2)=E(Xi2)E(nXˉ2)E(Xi2)E(nXˉ2)=E(Xi2)nE(Xˉ2)=nσ2+nμ2σ2nμ2{E}\left(\sum\left(X_{i}-\bar{X}\right)^{2}\right)={E}\left(\sum X_{i}^{2}-2 \bar{X} \sum X_{i}+n \bar{X}^{2}\right)=\sum {E}\left(X_{i}^{2}\right)-{E}\left(n \bar{X}^{2}\right) \\\sum {E}\left(X_{i}^{2}\right)-{E}\left(n \bar{X}^{2}\right)=\sum {E}\left(X_{i}^{2}\right)-n {E}\left(\bar{X}^{2}\right)=n \sigma^{2}+n \mu^{2}-\sigma^{2}-n \mu^{2}

It will be simplified to (n1)σ2(\mathrm{n}-1) \sigma^{2}

Therefore,

E((XiXˉ)2)=(n1)σ2E(s2)=E(Σ(XiXˉ)2n1)=1n1E((XiXˉ)2){E}\left(\sum\left(X_{i}-\bar{X}\right)^{2}\right)=(n-1) \sigma^{2} \\{E}\left(s^{2}\right)={E}\left(\frac{\Sigma\left(X_{i}-\bar{X}\right)^{2}}{n-1}\right)=\frac{1}{n-1} {E}\left(\sum\left(X_{i}-\bar{X}\right)^{2}\right)

E(s2)=(n1)σ2n1=σ2{E}(s^2)=\dfrac{(n-1) \sigma^{2}}{n-1}=\sigma^{2}

Hence, it is proved that that the sample variance is an unbiased estimator of the population variance. Replacing X with the Y

E[1n1i=1n(YiYˉ)]=σ2E[\dfrac1{n-1}\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)]={\sigma}^2

Hence, proved.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS