Question #198904

A firm report 35% of the probability that its accounts receivable from other business firms are overdue. If an accountant takes a random sample of five such accounts, then construct the probability distribution table for accounts are overdue.


1
Expert's answer
2021-06-01T01:41:51-0400

Let X=X= the number of accounts which are overdue: XBin(n,p)X\sim Bin(n,p)

Given p=0.35,n=5.p=0.35, n=5.


P(X=x)=(nx)px(1p)nxP(X=x)=\dbinom{n}{x}p^x(1-p)^{n-x}

P(X=0)=(50)0.350(10.35)50P(X=0)=\dbinom{5}{0}0.35^0(1-0.35)^{5-0}

=0.1160290625=0.1160290625

P(X=1)=(51)0.351(10.35)51P(X=1)=\dbinom{5}{1}0.35^1(1-0.35)^{5-1}

=0.3123859375=0.3123859375

P(X=2)=(52)0.352(10.35)52P(X=2)=\dbinom{5}{2}0.35^2(1-0.35)^{5-2}

=0.336415625=0.336415625

P(X=3)=(53)0.353(10.35)53P(X=3)=\dbinom{5}{3}0.35^3(1-0.35)^{5-3}

=0.181146875=0.181146875

P(X=4)=(54)0.354(10.35)54P(X=4)=\dbinom{5}{4}0.35^4(1-0.35)^{5-4}

=0.0487703125=0.0487703125

P(X=5)=(55)0.355(10.35)55P(X=5)=\dbinom{5}{5}0.35^5(1-0.35)^{5-5}

=0.0052521875=0.0052521875

xp(x)00.116029062510.312385937520.33641562530.18114687540.048770312550.0052521875\def\arraystretch{1.5} \begin{array}{c:c} x &p(x) \\ \hline 0 & 0.1160290625 \\ \hdashline 1 & 0.3123859375 \\ \hdashline 2 & 0.336415625 \\ \hdashline 3 & 0.181146875 \\ \hdashline 4 & 0.0487703125 \\ \hdashline 5 & 0.0052521875 \\ \end{array}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS