Question #198901

The number of entries made in accounts receivable is a poisson distribution with average 2 per day .What is the probability that on a specified day at least 3 entries will be received?     


1
Expert's answer
2021-05-27T09:40:20-0400

Given,

Mean μ=2Mean\ \mu =2

and we know that,

For Poisson DistributionP(x)=μxeμx!Putting μ=2P(x)=2xe2x!For\ Poisson\ Distribution\\P(x)=\dfrac{\mu^xe^{-\mu}}{x!}\\Putting\ \mu=2\\P(x)=\dfrac{2^xe^{-2}}{x!}


Now, Probability that on a specified day at least 3 entries will receive = P(x3)P(x\geq 3)


P(x3)=1[P(0)+P(1)+P(2)]P(x\geq 3)=1-[P(0)+P(1)+P(2)]

=11e2[200!+211!+222!] =11e2[1+2+2] =15e2=0.323=1-\dfrac{1}{e^2}[\dfrac{2^0}{0!}+\dfrac{2^1}{1!}+\dfrac{2^2}{2!}]\\\ \\=1-\dfrac{1}{e^2}[1+2+2]\\\ \\=1-\dfrac{5}{e^2}=0.323


Hence, P(x3)=0.323\boxed{P(x\geq 3)=0.323}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS