We have given the population : 5, 10, 8, 11, 17, 6, 15, 23
a.) The point estimate of population mean = 5 + 10 + 8 + 11 + 17 + 6 + 15 + 23 8 = 11.875 = \dfrac{5+10+8+11+17+6+15+23}{8} = 11.875 = 8 5 + 10 + 8 + 11 + 17 + 6 + 15 + 23 = 11.875
The point estimate of population standard deviation
= ( 5 − 11.875 ) 2 + ( 10 − 11.875 ) + ( 8 − 11.875 ) 2 + ( 11 − 11.875 ) 2 + ( 17 − 11.875 ) 2 + ( 6 − 11.875 ) 2 + ( 15 − 11.875 ) 2 + ( 23 − 11.875 ) 2 8 − 1 = 47.26 + 3.51 + 15.01 + 0.76 + 26.26 + 34.51 + 9.76 + 123.76 7 = 6.10 = \sqrt{\dfrac{(5-11.875)^2+(10-11.875)^+(8-11.875)^2+(11-11.875)^2+(17-11.875)^2+(6-11.875)^2+(15-11.875)^2+(23-11.875)^2}{8-1}}
\\= \sqrt{\dfrac{47.26+3.51+15.01+0.76+26.26+34.51+9.76+123.76}{7}}\\
= 6.10 = 8 − 1 ( 5 − 11.875 ) 2 + ( 10 − 11.875 ) + ( 8 − 11.875 ) 2 + ( 11 − 11.875 ) 2 + ( 17 − 11.875 ) 2 + ( 6 − 11.875 ) 2 + ( 15 − 11.875 ) 2 + ( 23 − 11.875 ) 2 = 7 47.26 + 3.51 + 15.01 + 0.76 + 26.26 + 34.51 + 9.76 + 123.76 = 6.10
b.) The margin of error = t α / 2 × s n = t_{\alpha/2}\times \dfrac{s}{\sqrt{n}} = t α /2 × n s
= 3.45 × 6.10 8 = 7.46 = 3.45 \times \dfrac{6.10}{\sqrt{8}} = 7.46 = 3.45 × 8 6.10 = 7.46
Then confidence interval becomes
x ˉ − 7.46 < μ < x ˉ + 7.4 ⟹ 11.875 − 7.46 < μ < 11.875 + 7.46 ⟹ 4.41 < μ < 19.33 \bar x-7.46<\mu<\bar x +7.4\\\implies
11.875-7.46< \mu<11.875+7.46\\
\implies 4.41<\mu<19.33 x ˉ − 7.46 < μ < x ˉ + 7.4 ⟹ 11.875 − 7.46 < μ < 11.875 + 7.46 ⟹ 4.41 < μ < 19.33
Comments