Question #198704

Suppose you are rolling a die for 4 times.

Let x be the random variable finding how many times you will get a ‘3’.

a. List all possible values for x.

b. Find the probability distribution of x.


1
Expert's answer
2021-05-26T16:37:19-0400

a. Possible values for X = 0,1,2,3,4

b. The sample space of equally likely outcomes is


P(3)=3436p=0.055q=0.945n=4P(X=0)=C04(0.055)0(0.945)40=4!0!(40)!×1×0.7974=0.7974P(X=1)=C14(0.055)1(0.945)41=4!1!(41)!×0.055×0.8439=0.1856P(X=2)=C24(0.055)2(0.945)42=4!2!(42)!×0.003025×0.8930=0.0162P(X=3)=C34(0.055)3(0.945)43=4!3!(43)!×0.00016638×0.945=0.0006289P(X=4)=C44(0.055)4(0.945)44=4!4!(44)!×9.15×106×1=9.15×106P(3) = \frac{34}{36} \\ p=0.055 \\ q = 0.945 \\ n = 4 \\ P(X=0) = C^4_0 (0.055)^0(0.945)^{4-0} \\ = \frac{4!}{0!(4-0)!} \times 1 \times 0.7974 \\ = 0.7974 \\ P(X=1) = C^4_1 (0.055)^1(0.945)^{4-1} \\ = \frac{4!}{1!(4-1)!} \times 0.055 \times 0.8439 \\ = 0.1856 \\ P(X=2) = C^4_2 (0.055)^2(0.945)^{4-2} \\ = \frac{4!}{2!(4-2)!} \times 0.003025 \times 0.8930 \\ = 0.0162 \\ P(X=3) = C^4_3 (0.055)^3(0.945)^{4-3} \\ = \frac{4!}{3!(4-3)!} \times 0.00016638 \times 0.945 \\ = 0.0006289 \\ P(X=4) = C^4_4 (0.055)^4(0.945)^{4-4} \\ = \frac{4!}{4!(4-4)!} \times 9.15 \times 10^{-6} \times 1 \\ = 9.15 \times 10^{-6}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS