9.
p=52⋅43=103
10.
p=113113−2=113111
11.
p=524+5213−521=5216=134
12.
Binomial probability:
P(x=k)=Cnkpk(1−p)n−k
p=0.25,n=15
a)
P(3≤x≤6)=P(x=3)+P(x=4)+P(x=5)+P(x=6)
P(x=3)=C153⋅0.253⋅0.7512=455⋅0.253⋅0.7512=0.2252
P(x=4)=C154⋅0.254⋅0.7511=1365⋅0.254⋅0.7511=0.2252
P(x=5)=C155⋅0.255⋅0.7510=3003⋅0.255⋅0.7510=0.1651
P(x=6)=C156⋅0.256⋅0.759=5005⋅0.256⋅0.759=0.0917
P(3≤x≤6)=0.2252+0.2252+0.1651+0.0917=0.7072
b)
P(x<4)=P(x=0)+P(x=1)+P(x=2)+P(x=3)
P(x=0)=0.7515=0.0134
P(x=1)=15⋅0.25⋅0.7514=0.0668
P(x=2)=C152⋅0.252⋅0.7513=105⋅0.252⋅0.7513=0.1559
P(x<4)=0.0134+0.0668+0.1559+0.2252=0.4613
c)
P(x>5)=1−P(x≤5)=
=1−(P(x=0)+P(x=1)+P(x=2)+P(x=3)+P(x=4)+P(x=5))
P(x>5)=1−(0.0134+0.0668+0.1559+0.2252+0.2252+0.1651)=0.1484
Comments