b. Given the population 2,1,3,3,5,4,7 find the probability that a random sample of size 25, selected with replacement, will yield a sample mean greater than 3.7, but less than 4.3.
Given population is- (2,1,3,3,5,7,4)
population mean "\\mu=\\dfrac{2+1+3+3+5+4+7}{7}=\\dfrac{25}{7}=3.55"
Sample standard deviation-
"s=\\sqrt{\\dfrac{(x-\\mu)^2}{n}}"
"=\\sqrt{\\dfrac{(-1.55)^2+(-2.55)^2+(-0.55)^2+(-0.55)^2+(1.45)^2+(0.45)^2+(3.45)^2}{7-1}}"
"=\\sqrt{\\dfrac{23.7175}{7}}=\\sqrt{3.3882}=1.9892"
Required Probability
"P(3.7<x<4.3)=P(\\dfrac{3.7-3.77}{1.9892}<z<\\dfrac{4.3-3.77}{1.9892})"
"=P(-0.035<z<0.266)\\\\[9pt]=0.11884"
Comments
Leave a comment