The c h e b y s h e v ′ s chebyshev's c h e b ys h e v ′ s inequality is given as,
p ( ∣ x − μ ∣ < k σ ) ⩾ 1 − ( 1 k 2 ) p(|x-\mu|\lt k\sigma )\geqslant 1-(\dfrac{1}{k^2}) p ( ∣ x − μ ∣ < kσ ) ⩾ 1 − ( k 2 1 )
where ,
x x x is the point estimate of the parameter whose confidence interval needs to be determined.
σ \sigma σ is the standard deviation of that parameter.
This question requires us to determine the confidence interval for the parameter p p p of the binomial distribution.
Given the random variables X 1 , X 2 , X 3 , . . . , X n X_1,X_2,X_3,...,X_n X 1 , X 2 , X 3 , ... , X n , we need to determine the point estimate for p p p .
To do so, let us define the random variable Y = ∑ i = 1 n X i = X 1 + X 2 + . . . . + X n Y=\sum ^n_{i=1}X_i=X_1+X_2+....+X_n Y = ∑ i = 1 n X i = X 1 + X 2 + .... + X n ,
Let p ^ \hat{p} p ^ be the point estimate for p p p then p ^ = ∑ i = 1 n X i / n = Y / n \hat{p}=\sum^n_{i=1}X_i/n=Y/n p ^ = ∑ i = 1 n X i / n = Y / n .
The standard deviation s d ( p ) \ sd\ (p) s d ( p ) for p p p is given as,
s d ( p ) = p ^ ( 1 − p ^ ) n sd(p)=\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}} s d ( p ) = n p ^ ( 1 − p ^ ) .
Now in the c h e b y s h e v ′ s chebyshev's c h e b ys h e v ′ s inequality stated above we need to find the value for k k k using the 95% confidence.
The right hand side of the inequality is equated with 95% in order to find k k k as below,
1 − ( 1 / k 2 ) = 0.95 ⟹ 0.05 = 1 / k 2 ⟹ k 2 = 20 ⟹ k = 4.5 ( 1 d p ) 1-(1/k^2)=0.95\implies0.05=1/k^2\implies k^2=20\implies k=4.5(1dp) 1 − ( 1/ k 2 ) = 0.95 ⟹ 0.05 = 1/ k 2 ⟹ k 2 = 20 ⟹ k = 4.5 ( 1 d p )
A 95% confidence interval for p p p is given as,
∣ p ^ − p ∣ < k ⋅ s d ( p ) |\hat{p}-p|\lt k\cdot sd(p) ∣ p ^ − p ∣ < k ⋅ s d ( p )
This can be re-written as,
p ^ − k ⋅ s d ( p ) < p < p ^ + k ⋅ s d ( p ) . . . . . . . . . . . . ( i ) \hat{p}-k\cdot sd(p)\lt p\lt\hat{p}+k\cdot sd(p)............(i) p ^ − k ⋅ s d ( p ) < p < p ^ + k ⋅ s d ( p ) ............ ( i )
Replacing for k k k and s d ( p ) sd(p) s d ( p ) in e q u a t i o n ( i ) equation (i) e q u a t i o n ( i ) we have,
p ^ − 4.5 p ^ ( 1 − p ^ ) / n < p < p ^ + 4.5 p ^ ( 1 − p ^ ) / n \hat{p}-4.5\sqrt{\hat{p}(1-\hat{p})/n}\lt p\lt \hat{p}+4.5\sqrt{\hat{p}(1-\hat{p})/n} p ^ − 4.5 p ^ ( 1 − p ^ ) / n < p < p ^ + 4.5 p ^ ( 1 − p ^ ) / n .
Therefore the 95% confidence interval for the parameter p p p is given as,
C . I = ( p ^ − 4.5 p ^ ( 1 − p ^ ) / n , p ^ + 4.5 p ^ ( 1 − p ^ ) / n ) C.I=(\hat{p}-4.5\sqrt{\hat{p}(1-\hat{p})/n },\space \hat{p}+4.5\sqrt{\hat{p}(1-\hat{p})/n }) C . I = ( p ^ − 4.5 p ^ ( 1 − p ^ ) / n , p ^ + 4.5 p ^ ( 1 − p ^ ) / n )
Comments