Question #188502

80% of the people who purchase ramen from Angeline are women


Answer the following in percent format (4 decimal places each).

If 9 of these customers are randomly selected, then the probability that all of them are women is Blank 1%.


If 10 of these customers are randomly selected, then the probability that there are at least 7 women is Blank 2%


1
Expert's answer
2021-05-07T12:37:10-0400

p=0.8q=1p=10.8=0.2p = 0.8 \\ q = 1 -p = 1 -0.8 = 0.2

If 9 of these customers are randomly selected, then the probability that all of them are women is

n=9P(X=x)=n!x!(nx)!×px×(q)nxP(X=9)=9!9!(99)!×0.89×(0.2)99=1×0.134217×1=0.134217=13.4217  %n = 9 \\ P(X=x) = \frac{n!}{x!(n-x)!} \times p^x \times (q)^{n-x} \\ P(X=9) = \frac{9!}{9!(9-9)!} \times 0.8^9 \times (0.2)^{9-9} \\ = 1 \times 0.134217 \times 1 \\ = 0.134217 \\ = 13.4217 \; \%

If 10 of these customers are randomly selected, then the probability that there are at least 7 women is

n=10P(X7)=P(X=7)+P(X=8)+P(X=9)+P(X=10)P(X=7)=10!7!(107)!×0.87×(0.2)107=120×0.2097×0.008=0.201312P(X=8)=10!8!(108)!×0.88×(0.2)108=45×0.1677×0.04=0.30186P(X=9)=10!9!(109)!×0.89×(0.2)109=10×0.134217×0.2=0.268434P(X=10)=10!10!(1010)!×0.810×(0.2)1010=1×0.1073741×1=0.1073741P(X7)=0.201312+0.30186+0.268434+0.1073741=0.878980=87.8980  %n = 10 \\ P(X≥7) = P(X=7) + P(X=8) + P(X=9) + P(X=10) \\ P(X=7) = \frac{10!}{7!(10-7)!} \times 0.8^7 \times (0.2)^{10-7} \\ = 120 \times 0.2097 \times 0.008 \\ = 0.201312 \\ P(X=8) = \frac{10!}{8!(10-8)!} \times 0.8^8 \times (0.2)^{10-8} \\ = 45 \times 0.1677 \times 0.04 \\ = 0.30186 \\ P(X=9) = \frac{10!}{9!(10-9)!} \times 0.8^9 \times (0.2)^{10-9} \\ = 10 \times 0.134217 \times 0.2 \\ = 0.268434 \\ P(X=10) = \frac{10!}{10!(10-10)!} \times 0.8^10 \times (0.2)^{10-10} \\ = 1 \times 0.1073741 \times 1 \\ = 0.1073741 \\ P(X≥7) = 0.201312 + 0.30186+ 0.268434 + 0.1073741 = 0.878980 \\ = 87.8980 \; \%


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS