For a continuous function f(x) =kx2e-x where x>0.Find i) k, ii) mean, iii) variance
"f(x) =kx^2e^{-x}, \\; x>0"
i) "\\int f(x) dx =1"
"\\int_0^\\infty kx^2 e^{-x}dx = k \\int_0^\\infty x^2 e^{-x} dx =\/ \\text{integrating by parts}\/ = 2k =1"
"k=1\/2"
ii) mean
"M[x] = \\int_0^\\infty xf(x) dx= k\\int_0^\\infty x^3 e^{-x} dx = \/ \\text{integrating by parts}\/ = 6k =3"
"M[x] = 3"
iii) variance
"D[x] = M[x^2] - (M[x])^2"
"M[x^2] = \\int_0^\\infty x^2f(x) dx= k\\int_0^\\infty x^4 e^{-x} dx = \/ \\text{integrating by parts}\/ = 24k =12"
"D[x] = 12 - (3)^2 = 12 - 9 = 3"
Comments
Leave a comment