Question #183305

Let X∼Poisson(k−1)X∼Poisson(k−1) with Var(X)=1Var(X)=1, then find the value of the constant kk


1
Expert's answer
2021-04-29T16:27:37-0400

We know that if XX follows a Poisson distribution of parameter λ\lambda , i.e. XPoisson(λ)X\sim \textrm{Poisson}(\lambda) , then the variance of XX is Var(X)=λ\textrm{Var}(X)=\lambda.

If we apply it to our case we have:


Var(X)=k1=1k1=1k=1+1k=2\textrm{Var}(X)=k-1=1\Rightarrow k-1=1\Rightarrow k=1+1\Rightarrow k=2


Thus, the value of the constant kk is k=2k=2 .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS