Answer to Question #182003 in Statistics and Probability for EUGINE HAWEZA

Question #182003

(1) Dr Mukonda’s performance of his 170 Biostatistics class of students is given in an incomplete distribution below.


Variable 0-10 10-20 20-30 30-40 40-50 50-60 60-70

Frequency f1 21 32 40 21 26 f7


(a) If the median is 35. After finding the missing frequencies, find the standard deviation and present this information

on a pie chart.


(b) Statistically, explain if these results are normally distributed.


1
Expert's answer
2021-04-25T14:34:24-0400

Class interval Frequency Cumulative Frequency 

 0−10 10 10 

 10−20 20 30 

 20−30 f1f_1 30+f1f _1

 30−40 40 70+f1f_1

 40−50 f2f_2  70+f1+f2f _1+f_ 2

​ 50−60 25 95+f1+f2f_1+f_2

 60−70 15 110+f1+f2f _1+f_2

  

(a) Here, Median=35.


∴ median class is 30−40,N=170,then N2=1702=85\dfrac{N}{2}=\dfrac{170}{2}=85


L=30,f=40,F=30+f1,h=10L=30,f=40,F=30+f_ 1,h=10


⇒ Now,  Median=L+N2Ff×h=L+\dfrac{\dfrac{N}{2}-F}{f}\times h


35=30+85(30+f1)40×1035=30+\dfrac{85-(30+f_1)}{40}\times 10


 35×4=120+(55f1)\Rightarrow 35\times 4=120+(55-f_1)


f1=35\Rightarrow f_1=35


 Alsof2=170110f1=6035=25Also f_2=170-110-f_1=60-35=25


Hence, the missing frequencies are,

Class 20−30⇒35

Class 40−50⇒25


The table for the above data distribution is-




Mean μ=XFF=6100170=35.88\mu=\dfrac{\sum XF}{\sum F}=\dfrac{6100}{170}=35.88



Standard deviation s=(xμ)2N=3016.59170=17.25=4.212s=\sqrt{\dfrac{\sum (x-\mu)^2}{N}}=\sqrt{\dfrac{3016.59}{170}}=\sqrt{17.25}=4.212


The pie chart is-




(b) The given data is not normally distributed since, There is no decrement in the frequencies after the middle frequency.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment