(1) Dr Mukonda’s performance of his 170 Biostatistics class of students is given in an incomplete distribution below.
Variable 0-10 10-20 20-30 30-40 40-50 50-60 60-70
Frequency f1 21 32 40 21 26 f7
(a) If the median is 35. After finding the missing frequencies, find the standard deviation and present this information
on a pie chart.
(b) Statistically, explain if these results are normally distributed.
Class interval Frequency Cumulative Frequency
0−10 10 10
10−20 20 30
20−30 "f_1" 30+"f _1"
30−40 40 70+"f_1"
40−50 "f_2" 70+"f _1+f_ 2"
50−60 25 95+"f_1+f_2"
60−70 15 110+"f _1+f_2"
(a) Here, Median=35.
∴ median class is 30−40,N=170,then "\\dfrac{N}{2}=\\dfrac{170}{2}=85"
"L=30,f=40,F=30+f_ 1,h=10"
⇒ Now, Median"=L+\\dfrac{\\dfrac{N}{2}-F}{f}\\times h"
"35=30+\\dfrac{85-(30+f_1)}{40}\\times 10"
"\\Rightarrow 35\\times 4=120+(55-f_1)"
"\\Rightarrow f_1=35"
"Also f_2=170-110-f_1=60-35=25"
Hence, the missing frequencies are,
Class 20−30⇒35
Class 40−50⇒25
The table for the above data distribution is-
Mean "\\mu=\\dfrac{\\sum XF}{\\sum F}=\\dfrac{6100}{170}=35.88"
Standard deviation "s=\\sqrt{\\dfrac{\\sum (x-\\mu)^2}{N}}=\\sqrt{\\dfrac{3016.59}{170}}=\\sqrt{17.25}=4.212"
The pie chart is-
(b) The given data is not normally distributed since, There is no decrement in the frequencies after the middle frequency.
Comments
Leave a comment