Question #181954

Supposefour coins are tossed. Let X represents the number of tails that occur. Illustrate a probability distribution of a random variable X USING FRACTION


1
Expert's answer
2021-05-02T08:15:31-0400

There are 24=162^4=16 outcomes.


HHHH,HHHT,HHTH,HTHH,HHHH, HHHT, HHTH, HTHH,

HHTT,HTHT,HTTH,HTTT,HHTT, HTHT, HTTH,HTTT,

TTTT,TTTH,TTHT,THTT,TTTT, TTTH, TTHT, THTT,

TTHH,THTH,THHT,THHHTTHH, THTH, THHT, THHH

Let XX represents the number of tails that occur.



x0134p(x)116416616416116\begin{matrix} x & 0 & 1 & & 3 & 4 \\ \\ p(x) & \dfrac{1}{16} & \dfrac{4}{16} & \dfrac{6}{16} & \dfrac{4}{16} & \dfrac{1}{16} \end{matrix}


mean=E(X)=ixip(xi)mean=E(X)=\sum_ix_ip(x_i)

=0(116)+1(416)+2(616)+3(416)+4(116)=2=0(\dfrac{1}{16})+1(\dfrac{4}{16})+2(\dfrac{6}{16})+3(\dfrac{4}{16})+4(\dfrac{1}{16})=2



E(X2)=ixi2p(xi)E(X^2)=\sum_ix_i^2p(x_i)

=02(116)+12(416)+22(616)+32(416)+42(116)=5=0^2(\dfrac{1}{16})+1^2(\dfrac{4}{16})+2^2(\dfrac{6}{16})+3^2(\dfrac{4}{16})+4^2(\dfrac{1}{16})=5

Var(X)=σ2=E(X2)(E(X))2=5(2)2=1Var(X)=\sigma^2=E(X^2)-(E(X))^2=5-(2)^2=1


σ=σ2=1\sigma=\sqrt{\sigma^2}=1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS