There are 2 4 = 16 2^4=16 2 4 = 16 outcomes.
H H H H , H H H T , H H T H , H T H H , HHHH, HHHT, HHTH, HTHH, HHHH , HHH T , HH T H , H T HH ,
H H T T , H T H T , H T T H , H T T T , HHTT, HTHT, HTTH,HTTT, HH TT , H T H T , H TT H , H TTT ,
T T T T , T T T H , T T H T , T H T T , TTTT, TTTH, TTHT, THTT, TTTT , TTT H , TT H T , T H TT ,
T T H H , T H T H , T H H T , T H H H TTHH, THTH, THHT, THHH TT HH , T H T H , T HH T , T HHH
Let X X X represents the number of tails that occur.
x 0 1 3 4 p ( x ) 1 16 4 16 6 16 4 16 1 16 \begin{matrix}
x & 0 & 1 & & 3 & 4 \\
\\
p(x) & \dfrac{1}{16} & \dfrac{4}{16} & \dfrac{6}{16} & \dfrac{4}{16} & \dfrac{1}{16}
\end{matrix} x p ( x ) 0 16 1 1 16 4 16 6 3 16 4 4 16 1
m e a n = E ( X ) = ∑ i x i p ( x i ) mean=E(X)=\sum_ix_ip(x_i) m e an = E ( X ) = i ∑ x i p ( x i )
= 0 ( 1 16 ) + 1 ( 4 16 ) + 2 ( 6 16 ) + 3 ( 4 16 ) + 4 ( 1 16 ) = 2 =0(\dfrac{1}{16})+1(\dfrac{4}{16})+2(\dfrac{6}{16})+3(\dfrac{4}{16})+4(\dfrac{1}{16})=2 = 0 ( 16 1 ) + 1 ( 16 4 ) + 2 ( 16 6 ) + 3 ( 16 4 ) + 4 ( 16 1 ) = 2
E ( X 2 ) = ∑ i x i 2 p ( x i ) E(X^2)=\sum_ix_i^2p(x_i) E ( X 2 ) = i ∑ x i 2 p ( x i )
= 0 2 ( 1 16 ) + 1 2 ( 4 16 ) + 2 2 ( 6 16 ) + 3 2 ( 4 16 ) + 4 2 ( 1 16 ) = 5 =0^2(\dfrac{1}{16})+1^2(\dfrac{4}{16})+2^2(\dfrac{6}{16})+3^2(\dfrac{4}{16})+4^2(\dfrac{1}{16})=5 = 0 2 ( 16 1 ) + 1 2 ( 16 4 ) + 2 2 ( 16 6 ) + 3 2 ( 16 4 ) + 4 2 ( 16 1 ) = 5
V a r ( X ) = σ 2 = E ( X 2 ) − ( E ( X ) ) 2 = 5 − ( 2 ) 2 = 1 Var(X)=\sigma^2=E(X^2)-(E(X))^2=5-(2)^2=1 Va r ( X ) = σ 2 = E ( X 2 ) − ( E ( X ) ) 2 = 5 − ( 2 ) 2 = 1
σ = σ 2 = 1 \sigma=\sqrt{\sigma^2}=1 σ = σ 2 = 1
Comments