If 𝑋~𝑁(40,144) then the mathematical expectation is a(X)=40, variance is σ2(X)=144⇒σ(X)=12 .
Then
a(Y)=a(2X−1)=2a(X)−a(1)=2⋅40−1=79
σ2(Y)=σ2(2X−1)=22σ2(X)−σ2(1)=4σ2(X)=4⋅144=576⇒σ(Y)=24
(i) Let's find
P(X≤40)=Φ(σ(X)β−a(X))−Φ(−∞)=Φ(1240−40)+0.5=0+0.5=0.5
Answer: P(X≤40)=0.5
(ii) P(Y≥50)=Φ(∞)−Φ(σ(Y)α−a(Y))=0.5−Φ(2450−79)=0.5+Φ(1.2)=0.5+0.3849=0.8849
Answer: P(Y≥50)=0.8849
(iii) P(35≤X≤45)=Φ(σ(X)β−a(X))−Φ(σ(X)α−a(X))=Φ(1245−40)+Φ(1235−40)=Φ(0.42)+Φ(0.42)=2⋅0.1628=0.3256
Answer: P(35≤X≤45)=0.3256
(iv) P(−45≤Y≤45)=Φ(σ(Y)β−a(Y))−Φ(σ(Y)α−a(Y))=Φ(2445−79)−Φ(24−45−79)=−Φ(1.42)+Φ(5.17)=−0.4222+0.5=0.0778
Answer: P(−45≤Y≤45)=0.0778
(v) P(−50≤Y≤100)=Φ(24100−79)−Φ(24−50−79)=Φ(0.875)+Φ(5.375)=0.3092+0.5=0.8092
Answer: P(−50≤Y≤100)=0.8092
Comments
Leave a comment