Answer to Question #180729 in Statistics and Probability for Nathan Drake

Question #180729

Let 𝑋~𝑁(40,144) and if 𝑌 = 2𝑋 − 1

Find the following probabilities:

(i) 𝑃(𝑋 ≤ 40)

(ii) 𝑃(𝑌 ≥ 50)

(iii)𝑃(35 ≤ 𝑋 ≤ 45)

(iv)𝑃(−45 ≤ 𝑌 ≤ 45)

(v)𝑃(−50 ≤ 𝑌 ≤ 100)


1
Expert's answer
2021-04-14T07:38:49-0400

If 𝑋~𝑁(40,144) then the mathematical expectation is a(X)=40a(X)=40, variance is σ2(X)=144σ(X)=12{\sigma ^2}(X) = 144 \Rightarrow \sigma (X) = 12 .

Then

a(Y)=a(2X1)=2a(X)a(1)=2401=79a(Y) = a(2X - 1) = 2a(X) - a(1) = 2 \cdot 40 - 1 = 79

σ2(Y)=σ2(2X1)=22σ2(X)σ2(1)=4σ2(X)=4144=576σ(Y)=24{\sigma ^2}(Y) = {\sigma ^2}(2X - 1) = {2^2}{\sigma ^2}(X) - {\sigma ^2}(1) = 4{\sigma ^2}(X) = 4 \cdot 144 = {\rm{576}} \Rightarrow \sigma (Y) = 24

(i) Let's find

P(X40)=Φ(βa(X)σ(X))Φ()=Φ(404012)+0.5=0+0.5=0.5P(X \le 40) = \Phi \left( {\frac{{\beta - a(X)}}{{\sigma (X)}}} \right) - \Phi \left( { - \infty } \right) = \Phi \left( {\frac{{40 - 40}}{{12}}} \right) + 0.5 = 0 + 0.5 = 0.5

Answer: P(X40)=0.5P(X \le 40) = 0.5

(ii) P(Y50)=Φ()Φ(αa(Y)σ(Y))=0.5Φ(507924)=0.5+Φ(1.2)=0.5+0.3849=0.8849P(Y \ge 50) = \Phi \left( \infty \right) - \Phi \left( {\frac{{\alpha - a(Y)}}{{\sigma (Y)}}} \right) = 0.5 - \Phi \left( {\frac{{50 - 79}}{{24}}} \right) = 0.5 + \Phi \left( {1.2} \right) = 0.5 + 0.3849 = 0.8849

Answer: P(Y50)=0.8849P(Y \ge 50) = 0.8849

(iii) P(35X45)=Φ(βa(X)σ(X))Φ(αa(X)σ(X))=Φ(454012)+Φ(354012)=Φ(0.42)+Φ(0.42)=20.1628=0.3256P(35 \le X \le 45) = \Phi \left( {\frac{{\beta - a(X)}}{{\sigma (X)}}} \right) - \Phi \left( {\frac{{\alpha - a(X)}}{{\sigma (X)}}} \right) = \Phi \left( {\frac{{45 - 40}}{{12}}} \right) + \Phi \left( {\frac{{35 - 40}}{{12}}} \right) = \Phi (0.42) + \Phi (0.42) = 2 \cdot 0.1628 = 0.3256

Answer: P(35X45)=0.3256P(35 \le X \le 45) = 0.3256

(iv) P(45Y45)=Φ(βa(Y)σ(Y))Φ(αa(Y)σ(Y))=Φ(457924)Φ(457924)=Φ(1.42)+Φ(5.17)=0.4222+0.5=0.0778P( - 45 \le Y \le 45) = \Phi \left( {\frac{{\beta - a(Y)}}{{\sigma (Y)}}} \right) - \Phi \left( {\frac{{\alpha - a(Y)}}{{\sigma (Y)}}} \right) = \Phi \left( {\frac{{45 - 79}}{{24}}} \right) - \Phi \left( {\frac{{ - 45 - 79}}{{24}}} \right) = - \Phi (1.42) + \Phi (5.17) = - 0.4222 + 0.5 = 0.0778

Answer: P(45Y45)=0.0778P( - 45 \le Y \le 45) = 0.0778

(v) P(50Y100)=Φ(1007924)Φ(507924)=Φ(0.875)+Φ(5.375)=0.3092+0.5=0.8092P( - 50 \le Y \le 100) = \Phi \left( {\frac{{100 - 79}}{{24}}} \right) - \Phi \left( {\frac{{ - 50 - 79}}{{24}}} \right) = \Phi (0.875) + \Phi (5.375) = 0.3092 + 0.5 = 0.8092

Answer: P(50Y100)=0.8092P( - 50 \le Y \le 100) = 0.8092


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment