(a) If X has a Uniform Distribution in (βπ, π), π > 0 , find π such that π(|π| < 1) = π(|π| > 1). Also find π(|π β 1| < 2) and π(|π| > 2).
(b)If X has a uniform distribution in (0, 3) ant Y has exponential distribution with parameter Ξ±, find Ξ± that πππ(π) = πππ(π). Also find π(π > 0.5/π < 1) .
(a) If X has a uniform distribution on a given segment, then the distribution function has the form:
"F(x) = \\left\\{ {\\begin{matrix}\n{0,\\,\\,x \\le - a}\\\\\n{\\frac{{x - ( - a)}}{{a - ( - a)}},\\,\\, - a < x < a}\\\\\n{1,\\,\\,x \\ge a}\n\\end{matrix}} \\right.= \\left\\{ {\\begin{matrix}\n{0,\\,\\,x \\le - a}\\\\\n{\\frac{{x + a}}{{2a}},\\,\\, - a < x < a}\\\\\n{1,\\,\\,x \\ge a}\n\\end{matrix}} \\right."
Then
"P(|X| < 1) = P( - 1 < X < 1) = F(1) - F( - 1)"
"P(|X| > 1) = P(X > 1) + P(X < - 1) = F(\\infty ) - F(1) + F( - 1) - F\\left( { - \\infty } \\right) = 1 - F(1) + F( - 1) - 0 = 1 - F(1) + F( - 1)"
We have:
"F(1) - F( - 1) = 1 - F(1) + F( - 1)"
"2F(1) - 2F( - 1) = 1 \\Rightarrow F(1) - F( - 1) = \\frac{1}{2}"
Then
"\\frac{{1 + a}}{{2a}} - \\frac{{ - 1 + a}}{{2a}} = \\frac{1}{2} \\Rightarrow \\frac{{1 + a + 1 - a}}{{2a}} = \\frac{1}{2} \\Rightarrow \\frac{1}{a} = \\frac{1}{2} \\Rightarrow a = 2"
Let's find
"P(|X - 1| < 2) = P( - 2 < X - 1 < 2) = P( - 1 < X < 3) = F(3) - F( - 1) = 1 - \\frac{{ - 1 + 2}}{4} = \\frac{3}{4}"
"P(|X| > 2) = P(X > 2) + P(X < - 2) = F(\\infty ) - F(2) + F( - 2) - F\\left( { - \\infty } \\right) = 1 - 1 + 0 - 0 = 0"
Answer: a=2, "P(|X - 1| < 2) = \\frac{3}{4}" , "P(|X| > 2) = 0"
(b) If X has a uniform distribution in (0, 3)Β then
"Var(X) = \\frac{{{{\\left( {b - a} \\right)}^2}}}{{12}} = \\frac{{{{\\left( {3 - 0} \\right)}^2}}}{{12}} = \\frac{9}{{12}} = \\frac{3}{4}"
If Y has exponential distribution with parameter Ξ± then
"Var(Y) = \\frac{1}{{{\\alpha ^2}}}"
"Var(X) = Var(Y) \\Rightarrow \\frac{3}{4} = \\frac{1}{{{\\alpha ^2}}} \\Rightarrow {\\alpha ^2} = \\frac{4}{3} \\Rightarrow \\alpha = \\frac{{2\\sqrt 3 }}{3}"
"P(Y > 0.5|Y < 1) = \\int\\limits_{0.5}^1 {\\alpha {e^{ - \\alpha x}}} dx = \\int\\limits_{0.5}^1 {\\frac{{2\\sqrt 3 }}{3}{e^{ - \\frac{{2\\sqrt 3 }}{3}x}}} dx = - \\left. {{e^{ - \\frac{{2\\sqrt 3 }}{3}x}}} \\right|_{0.5}^1 = - {e^{ - \\frac{{2\\sqrt 3 }}{3}}} + {e^{ - \\frac{{\\sqrt 3 }}{3}}} \\approx 0.246"
Answer: "\\alpha = \\frac{{2\\sqrt 3 }}{3}" , "P(Y > 0.5|Y < 1) \\approx 0.246"
Comments
Leave a comment