Answer to Question #176416 in Statistics and Probability for Jarma

Question #176416

15 percent of the workers in grade A,30 percent workers in grade B and 55 percent of the workers in grade C, if you receive amount less than 25000 you are in grade C,if you receive more than 56000 you are in grade A,find the mean and standard deviation of the income distribution assuming it is normally distributed


1
Expert's answer
2021-03-31T16:56:55-0400

We have:

"P(x < 25000) = 0.55"

"P(x > 56000) = 0.15"

"P(25000 \\le x \\le 56000) = 0.3"

Let "a" is mean, "\\sigma" is standard deviation. Then

"\\Phi \\left( {\\frac{{25000 - a}}{\\sigma }} \\right) - \\Phi \\left( { - \\infty } \\right) = 0.55 \\Rightarrow \\Phi \\left( {\\frac{{25000 - a}}{\\sigma }} \\right) + 0.5 = 0.55 \\Rightarrow \\Phi \\left( {\\frac{{25000 - a}}{\\sigma }} \\right) = 0.05"

"\\Phi \\left( \\infty \\right) - \\Phi \\left( {\\frac{{56000 - a}}{\\sigma }} \\right) = 0.15 \\Rightarrow 0.5 - \\Phi \\left( {\\frac{{56000 - a}}{\\sigma }} \\right) = 0.15 \\Rightarrow \\Phi \\left( {\\frac{{56000 - a}}{\\sigma }} \\right) = 0.35"

"\\Phi \\left( {\\frac{{56000 - a}}{\\sigma }} \\right) - \\Phi \\left( {\\frac{{25000 - a}}{\\sigma }} \\right) = 0.3"

If "\\Phi \\left( {\\frac{{25000 - a}}{\\sigma }} \\right) = 0.05" then "\\frac{{25000 - a}}{\\sigma } = 0.13".

If "\\Phi \\left( {\\frac{{56000 - a}}{\\sigma }} \\right) = 0.35" then "\\frac{{56000 - a}}{\\sigma } = 1.04" .

We have the system:

"\\left\\{ \\begin{matrix}\n\\frac{{25000 - a}}{\\sigma } = 0.13\\\\\n\\frac{{56000 - a}}{\\sigma } = 1.04\n\\end{matrix} \\right. \\Rightarrow \\left\\{ {\\begin{matrix}\n{\\sigma = \\frac{{25000 - a}}{{0.13}}}\\\\\n{\\frac{{56000 - a}}{{\\frac{{25000 - a}}{{0.13}}}} = 1.04}\n\\end{matrix}} \\right. \\Rightarrow \\left\\{ {\\begin{matrix}\n{\\sigma = \\frac{{25000 - a}}{{0.13}}}\\\\\n{7280 - 0.13a = 26000 - 1.04a}\n\\end{matrix}} \\right. \\Rightarrow \\left\\{ {\\begin{matrix}\n{0.91a = 18720}\\\\\n{\\sigma = \\frac{{25000 - a}}{{0.13}}}\n\\end{matrix} \\Rightarrow \\left\\{ {\\begin{matrix}\n{a = \\frac{{144000}}{7}}\\\\\n{\\sigma = \\frac{{31000}}{{91}}}\n\\end{matrix}} \\right.} \\right."

Answer: "{a = \\frac{{144000}}{7}}, {\\sigma = \\frac{{31000}}{{91}}}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS