Plant scientists developed different varieties of corns that have a rich content of lysine which is a nutritious animal feed. A group of chicks were given this food to test the quality. The distribution of the weight gains (in grams) of these chicks are shown below:
Weight gains (in grams) Frequency
318 - 335 4
336 - 353 5
354 - 371 2
372 - 389 3
390 – 407 2
408 – 425 3
426 - 443 1
Find:
(a) the mean weight gains
(b) the median
(c) the variance for the above frequency intervals
(d) the standard deviation
(a) Let's find the mean "\\overline x = \\frac{{\\sum {x_i^*{n_i}} }}{n}" . Build a calculation table:
"\\begin{matrix}\n{interval}&{x_i^*,\\,\\,middle{\\rm{ }}\\,of{\\rm{ }}\\,interval}&{{n_i}}&{x_i^*{n_i}}\\\\\n{318 - 335}&{326.5}&4&{1306}\\\\\n{336 - 353}&{344.5}&5&{1722.5}\\\\\n{354 - 371}&{362.5}&2&{725}\\\\\n{372 - 389}&{380.5}&3&{1141.5}\\\\\n{390 - 407}&{398.5}&2&{797}\\\\\n{408 - 425}&{416.5}&3&{1249.5}\\\\\n{426 - 431}&{434.5}&1&{434.5}\\\\\n{sum}&{}&{20}&{7376}\n\\end{matrix}"
Then "\\overline x = \\frac{{7376}}{{20}} = {\\rm{368}}{\\rm{.8}}"
Answer: "\\overline x = {\\rm{368}}{\\rm{.8}}"
(b) Let's make a table of accumulated frequencies "{f_i}" :
"\\begin{matrix}\n{interval}&{{n_i}}&{{f_i}}&{}\\\\\n{318 - 335}&4&4&{}\\\\\n{336 - 353}&5&9&{}\\\\\n{354 - 371}&2&{11}&{}\\\\\n{372 - 389}&3&{14}&{}\\\\\n{390 - 407}&2&{16}&{}\\\\\n{408 - 425}&3&{19}&{}\\\\\n{426 - 431}&1&{20}&{}\n\\end{matrix}"
Then median interval is 354-371. Then median is
"Me = {x_{Me}} + i\\frac{{\\frac{{\\sum f }}{2} - {f_{Me - 1}}}}{{{f_{Me}}}} = 354 + 17 \\cdot \\frac{{\\frac{{20}}{2} - 9}}{{11}} \\approx 355.55"
Answer: "Me \\approx 355.55"
(c) Let's find the variance "D = \\frac{{\\sum {{{\\left( {x_i^* - \\overline x } \\right)}^2}{n_i}} }}{n}" . Build a calculation table:
"\\begin{matrix}\n{interval}&{x_i^*,\\,\\,middle\\,{\\rm{ }}of{\\rm{ }} \\,interval}&{{n_i}}&{{{\\left( {x_i^* - \\overline x } \\right)}^2}}&{{{\\left( {x_i^* - \\overline x } \\right)}^2}{n_i}}\\\\\n{318 - 335}&{326.5}&4&{1789.29}&{7157.16}\\\\\n{336 - 353}&{344.5}&5&{590.49}&{2952.45}\\\\\n{354 - 371}&{362.5}&2&{39.69}&{79.38}\\\\\n{372 - 389}&{380.5}&3&{136.89}&{410.67}\\\\\n{390 - 407}&{398.5}&2&{882.09}&{1764.18}\\\\\n{408 - 425}&{416.5}&3&{2275.29}&{6825.87}\\\\\n{426 - 431}&{434.5}&1&{4316.49}&{4316.49}\\\\\n{sum}&{}&{20}&{}&{23506.2}\n\\end{matrix}"
Then "D = \\frac{{23506.2}}{{20}} = {\\rm{1175}}{\\rm{.31}}"
Answer: "D = {\\rm{1175}}{\\rm{.31}}"
(d) Let's find the standard deviation: "\\sigma {\\rm{ = }}\\sqrt D = \\sqrt {{\\rm{1175}}{\\rm{.31}}} \\approx 34.28" .
Answer: "\\sigma {\\rm{ }} \\approx 34.28"
Comments
Leave a comment