Question #176375

Plant scientists developed different varieties of corns that have a rich content of lysine which is a nutritious animal feed. A group of chicks were given this food to test the quality. The distribution of the weight gains (in grams) of these chicks are shown below:


Weight gains (in grams) Frequency

318 - 335 4

336 - 353 5

354 - 371 2

372 - 389 3

390 – 407 2

408 – 425 3

426 - 443 1


Find:

(a) the mean weight gains

(b) the median

(c) the variance for the above frequency intervals

(d) the standard deviation


1
Expert's answer
2021-03-31T09:25:55-0400

(a) Let's find the mean x=xinin\overline x = \frac{{\sum {x_i^*{n_i}} }}{n} . Build a calculation table:

intervalxi,middleofintervalnixini318335326.541306336353344.551722.5354371362.52725372389380.531141.5390407398.52797408425416.531249.5426431434.51434.5sum207376\begin{matrix} {interval}&{x_i^*,\,\,middle{\rm{ }}\,of{\rm{ }}\,interval}&{{n_i}}&{x_i^*{n_i}}\\ {318 - 335}&{326.5}&4&{1306}\\ {336 - 353}&{344.5}&5&{1722.5}\\ {354 - 371}&{362.5}&2&{725}\\ {372 - 389}&{380.5}&3&{1141.5}\\ {390 - 407}&{398.5}&2&{797}\\ {408 - 425}&{416.5}&3&{1249.5}\\ {426 - 431}&{434.5}&1&{434.5}\\ {sum}&{}&{20}&{7376} \end{matrix}

Then x=737620=368.8\overline x = \frac{{7376}}{{20}} = {\rm{368}}{\rm{.8}}

Answer: x=368.8\overline x = {\rm{368}}{\rm{.8}}

(b) Let's make a table of accumulated frequencies fi{f_i} :

intervalnifi3183354433635359354371211372389314390407216408425319426431120\begin{matrix} {interval}&{{n_i}}&{{f_i}}&{}\\ {318 - 335}&4&4&{}\\ {336 - 353}&5&9&{}\\ {354 - 371}&2&{11}&{}\\ {372 - 389}&3&{14}&{}\\ {390 - 407}&2&{16}&{}\\ {408 - 425}&3&{19}&{}\\ {426 - 431}&1&{20}&{} \end{matrix}

Then median interval is 354-371. Then median is

Me=xMe+if2fMe1fMe=354+17202911355.55Me = {x_{Me}} + i\frac{{\frac{{\sum f }}{2} - {f_{Me - 1}}}}{{{f_{Me}}}} = 354 + 17 \cdot \frac{{\frac{{20}}{2} - 9}}{{11}} \approx 355.55

Answer: Me355.55Me \approx 355.55

(c) Let's find the variance D=(xix)2ninD = \frac{{\sum {{{\left( {x_i^* - \overline x } \right)}^2}{n_i}} }}{n} . Build a calculation table:

intervalxi,middleofintervalni(xix)2(xix)2ni318335326.541789.297157.16336353344.55590.492952.45354371362.5239.6979.38372389380.53136.89410.67390407398.52882.091764.18408425416.532275.296825.87426431434.514316.494316.49sum2023506.2\begin{matrix} {interval}&{x_i^*,\,\,middle\,{\rm{ }}of{\rm{ }} \,interval}&{{n_i}}&{{{\left( {x_i^* - \overline x } \right)}^2}}&{{{\left( {x_i^* - \overline x } \right)}^2}{n_i}}\\ {318 - 335}&{326.5}&4&{1789.29}&{7157.16}\\ {336 - 353}&{344.5}&5&{590.49}&{2952.45}\\ {354 - 371}&{362.5}&2&{39.69}&{79.38}\\ {372 - 389}&{380.5}&3&{136.89}&{410.67}\\ {390 - 407}&{398.5}&2&{882.09}&{1764.18}\\ {408 - 425}&{416.5}&3&{2275.29}&{6825.87}\\ {426 - 431}&{434.5}&1&{4316.49}&{4316.49}\\ {sum}&{}&{20}&{}&{23506.2} \end{matrix}

Then D=23506.220=1175.31D = \frac{{23506.2}}{{20}} = {\rm{1175}}{\rm{.31}}

Answer: D=1175.31D = {\rm{1175}}{\rm{.31}}

(d) Let's find the standard deviation: σ=D=1175.3134.28\sigma {\rm{ = }}\sqrt D = \sqrt {{\rm{1175}}{\rm{.31}}} \approx 34.28 .

Answer: σ34.28\sigma {\rm{ }} \approx 34.28


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS