(a) Let's find the mean x ‾ = ∑ x i ∗ n i n \overline x = \frac{{\sum {x_i^*{n_i}} }}{n} x = n ∑ x i ∗ n i . Build a calculation table:
i n t e r v a l x i ∗ , m i d d l e o f i n t e r v a l n i x i ∗ n i 318 − 335 326.5 4 1306 336 − 353 344.5 5 1722.5 354 − 371 362.5 2 725 372 − 389 380.5 3 1141.5 390 − 407 398.5 2 797 408 − 425 416.5 3 1249.5 426 − 431 434.5 1 434.5 s u m 20 7376 \begin{matrix}
{interval}&{x_i^*,\,\,middle{\rm{ }}\,of{\rm{ }}\,interval}&{{n_i}}&{x_i^*{n_i}}\\
{318 - 335}&{326.5}&4&{1306}\\
{336 - 353}&{344.5}&5&{1722.5}\\
{354 - 371}&{362.5}&2&{725}\\
{372 - 389}&{380.5}&3&{1141.5}\\
{390 - 407}&{398.5}&2&{797}\\
{408 - 425}&{416.5}&3&{1249.5}\\
{426 - 431}&{434.5}&1&{434.5}\\
{sum}&{}&{20}&{7376}
\end{matrix} in t er v a l 318 − 335 336 − 353 354 − 371 372 − 389 390 − 407 408 − 425 426 − 431 s u m x i ∗ , mi dd l e o f in t er v a l 326.5 344.5 362.5 380.5 398.5 416.5 434.5 n i 4 5 2 3 2 3 1 20 x i ∗ n i 1306 1722.5 725 1141.5 797 1249.5 434.5 7376
Then x ‾ = 7376 20 = 368 . 8 \overline x = \frac{{7376}}{{20}} = {\rm{368}}{\rm{.8}} x = 20 7376 = 368 .8
Answer: x ‾ = 368 . 8 \overline x = {\rm{368}}{\rm{.8}} x = 368 .8
(b) Let's make a table of accumulated frequencies f i {f_i} f i :
i n t e r v a l n i f i 318 − 335 4 4 336 − 353 5 9 354 − 371 2 11 372 − 389 3 14 390 − 407 2 16 408 − 425 3 19 426 − 431 1 20 \begin{matrix}
{interval}&{{n_i}}&{{f_i}}&{}\\
{318 - 335}&4&4&{}\\
{336 - 353}&5&9&{}\\
{354 - 371}&2&{11}&{}\\
{372 - 389}&3&{14}&{}\\
{390 - 407}&2&{16}&{}\\
{408 - 425}&3&{19}&{}\\
{426 - 431}&1&{20}&{}
\end{matrix} in t er v a l 318 − 335 336 − 353 354 − 371 372 − 389 390 − 407 408 − 425 426 − 431 n i 4 5 2 3 2 3 1 f i 4 9 11 14 16 19 20
Then median interval is 354-371. Then median is
M e = x M e + i ∑ f 2 − f M e − 1 f M e = 354 + 17 ⋅ 20 2 − 9 11 ≈ 355.55 Me = {x_{Me}} + i\frac{{\frac{{\sum f }}{2} - {f_{Me - 1}}}}{{{f_{Me}}}} = 354 + 17 \cdot \frac{{\frac{{20}}{2} - 9}}{{11}} \approx 355.55 M e = x M e + i f M e 2 ∑ f − f M e − 1 = 354 + 17 ⋅ 11 2 20 − 9 ≈ 355.55
Answer: M e ≈ 355.55 Me \approx 355.55 M e ≈ 355.55
(c) Let's find the variance D = ∑ ( x i ∗ − x ‾ ) 2 n i n D = \frac{{\sum {{{\left( {x_i^* - \overline x } \right)}^2}{n_i}} }}{n} D = n ∑ ( x i ∗ − x ) 2 n i . Build a calculation table:
i n t e r v a l x i ∗ , m i d d l e o f i n t e r v a l n i ( x i ∗ − x ‾ ) 2 ( x i ∗ − x ‾ ) 2 n i 318 − 335 326.5 4 1789.29 7157.16 336 − 353 344.5 5 590.49 2952.45 354 − 371 362.5 2 39.69 79.38 372 − 389 380.5 3 136.89 410.67 390 − 407 398.5 2 882.09 1764.18 408 − 425 416.5 3 2275.29 6825.87 426 − 431 434.5 1 4316.49 4316.49 s u m 20 23506.2 \begin{matrix}
{interval}&{x_i^*,\,\,middle\,{\rm{ }}of{\rm{ }} \,interval}&{{n_i}}&{{{\left( {x_i^* - \overline x } \right)}^2}}&{{{\left( {x_i^* - \overline x } \right)}^2}{n_i}}\\
{318 - 335}&{326.5}&4&{1789.29}&{7157.16}\\
{336 - 353}&{344.5}&5&{590.49}&{2952.45}\\
{354 - 371}&{362.5}&2&{39.69}&{79.38}\\
{372 - 389}&{380.5}&3&{136.89}&{410.67}\\
{390 - 407}&{398.5}&2&{882.09}&{1764.18}\\
{408 - 425}&{416.5}&3&{2275.29}&{6825.87}\\
{426 - 431}&{434.5}&1&{4316.49}&{4316.49}\\
{sum}&{}&{20}&{}&{23506.2}
\end{matrix} in t er v a l 318 − 335 336 − 353 354 − 371 372 − 389 390 − 407 408 − 425 426 − 431 s u m x i ∗ , mi dd l e o f in t er v a l 326.5 344.5 362.5 380.5 398.5 416.5 434.5 n i 4 5 2 3 2 3 1 20 ( x i ∗ − x ) 2 1789.29 590.49 39.69 136.89 882.09 2275.29 4316.49 ( x i ∗ − x ) 2 n i 7157.16 2952.45 79.38 410.67 1764.18 6825.87 4316.49 23506.2
Then D = 23506.2 20 = 1175 . 31 D = \frac{{23506.2}}{{20}} = {\rm{1175}}{\rm{.31}} D = 20 23506.2 = 1175 .31
Answer: D = 1175 . 31 D = {\rm{1175}}{\rm{.31}} D = 1175 .31
(d) Let's find the standard deviation: σ = D = 1175 . 31 ≈ 34.28 \sigma {\rm{ = }}\sqrt D = \sqrt {{\rm{1175}}{\rm{.31}}} \approx 34.28 σ = D = 1175 .31 ≈ 34.28 .
Answer: σ ≈ 34.28 \sigma {\rm{ }} \approx 34.28 σ ≈ 34.28
Comments