Question #175940

 The data below shows the age distribution of cases of a certain disease reported during the year at a hospital.

34, 17, 25, 37, 19, 19, 27, 19, 44, 24,

24, 22, 32, 12, 13, 16, 18, 14, 12, 16,

14, 17, 10, 16, 22, 20, 15, 15, 10, 10,

14, 17, 20, 18, 19, 13, 13, 13, 18, 30,

24, 34, 44, 31, 43, 40, 28, 31, 18, 22,

15, 31, 18, 27, 35, 35, 20, 32, 38, 32


 Organizing the data into a frequency distribution or table, Calculate the coefficient of Skewness and Kurtosis and interpret your results


1
Expert's answer
2021-03-30T07:32:04-0400

The frequency distribution


Xff(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)1031/1014/20196/401221/101/201/401341/102/204/401431/103/209/401531/106/2036/401631/107/2049/401732/1016/20128/401851/109/2081/401941/1010/20100/402031/1014/20196/402231/1014/20196/402431/1014/20196/402511/1014/20196/402721/1014/20196/402811/1014/20196/403011/1014/20196/403131/1014/20196/403231/1014/20196/403421/1014/20196/403521/1014/20196/403711/1014/20196/403811/1014/20196/404011/1014/20196/404311/1014/20196/404421/1014/20196/40Total60168/20604/40\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} X & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline 10 & 3 & 1/10 & 14/20 & 196/40 \\ \hdashline 12 & 2 & 1/10 & 1/20 & 1/40 \\ \hdashline 13 & 4 & 1/10 & 2/20 & 4/40 \\ \hdashline 14 & 3 & 1/10 & 3/20 & 9/40 \\ \hdashline 15 & 3 & 1/10 & 6/20 & 36/40 \\ \hdashline 16 & 3 & 1/10 & 7/20 & 49/40 \\ \hdashline 17 & 3 & 2/10 & 16/20 & 128/40 \\ \hdashline 18 & 5 & 1/10 & 9/20 & 81/40 \\ \hdashline 19 & 4 & 1/10 & 10/20 & 100/40 \\ \hdashline 20 & 3 & 1/10 & 14/20 & 196/40 \\ \hdashline 22 & 3 & 1/10 & 14/20 & 196/40 \\ \hdashline 24 & 3 & 1/10 & 14/20 & 196/40 \\ \hdashline 25 & 1 & 1/10 & 14/20 & 196/40 \\ \hdashline 27 & 2 & 1/10 & 14/20 & 196/40 \\ \hdashline 28 & 1 & 1/10 & 14/20 & 196/40 \\ \hdashline 30 & 1 & 1/10 & 14/20 & 196/40 \\ \hdashline 31 & 3 & 1/10 & 14/20 & 196/40 \\ \hdashline 32 & 3 & 1/10 & 14/20 & 196/40 \\ \hdashline 34 & 2 & 1/10 & 14/20 & 196/40 \\ \hdashline 35 & 2 & 1/10 & 14/20 & 196/40 \\ \hdashline 37 & 1 & 1/10 & 14/20 & 196/40 \\ \hdashline 38 & 1 & 1/10 & 14/20 & 196/40 \\ \hdashline 40 & 1 & 1/10 & 14/20 & 196/40 \\ \hdashline 43 & 1 & 1/10 & 14/20 & 196/40 \\ \hdashline 44 & 2 & 1/10 & 14/20 & 196/40 \\ \hdashline Total & 60 & 1 & 68/20 & 604/40 \\ \hline \end{array}

Mean


mean=Xˉ=160(10(3)+12(2)+13(4)+14(3)mean=\bar{X}=\dfrac{1}{60}(10(3)+12(2)+13(4)+14(3)




+15(3)+16(3)+17(3)+18(5)+19(4)+20(3)+15(3)+16(3)+17(3)+18(5)+19(4)+20(3)

+22(3)+24(3)+25(1)+27(2)+28(1)+30(1)+22(3)+24(3)+25(1)+27(2)+28(1)+30(1)

+31(3)+32(3)+34(2)+35(2)+37(1)+38(1)+31(3)+32(3)+34(2)+35(2)+37(1)+38(1)

+40(1)+43(1)+44(2))=68330=22.76667+40(1)+43(1)+44(2))=\dfrac{683}{30}=22.76667

Variance


s2=1601(3(1068330)2+...+2(4468330)2)s^2=\dfrac{1}{60-1}\big(3(10-\dfrac{683}{30})^2+...+2(44-\dfrac{683}{30})^2)

86.85989\approx86.85989


Standard deviation


s=s2=86.859899.31987s=\sqrt{s^2}=\sqrt{86.85989}\approx9.31987




median=19+202=19.5median=\dfrac{19+20}{2}=19.5

Skewness Coefficient=3(meanmedian)sSkewness \ Coefficient = \dfrac{3(mean-median)}{s}

3(6833019.5)9.319871.05152\approx \dfrac{3(\dfrac{683}{30}-19.5)}{9.31987}\approx1.05152

The distribution is positively skewed. A positive skew indicates a longer tail to the right.


skewness=ni(XiXˉ)3(n1)(n2)s30.69245skewness=\dfrac{n\sum_i(X_i-\bar{X})^3}{(n-1)(n-2)s^3}\approx0.69245



curtosis=n(n+1)i(XiXˉ)4(n1)(n2)(n3)s4curtosis=\dfrac{n(n+1)\sum_i(X_i-\bar{X})^4}{(n-1)(n-2)(n-3)s^4}

3(n1)2(n2)(n3)0.52650-3\cdot\dfrac{(n-1)^2}{(n-2)(n-3)}\approx-0.52650

A platykurtic distribution shows a negative excess kurtosis. The kurtosis reveals a distribution with flat tails.

Significant skewness and kurtosis clearly indicate that data are not normal.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS