Answer to Question #175940 in Statistics and Probability for Michael

Question #175940

 The data below shows the age distribution of cases of a certain disease reported during the year at a hospital.

34, 17, 25, 37, 19, 19, 27, 19, 44, 24,

24, 22, 32, 12, 13, 16, 18, 14, 12, 16,

14, 17, 10, 16, 22, 20, 15, 15, 10, 10,

14, 17, 20, 18, 19, 13, 13, 13, 18, 30,

24, 34, 44, 31, 43, 40, 28, 31, 18, 22,

15, 31, 18, 27, 35, 35, 20, 32, 38, 32


 Organizing the data into a frequency distribution or table, Calculate the coefficient of Skewness and Kurtosis and interpret your results


1
Expert's answer
2021-03-30T07:32:04-0400

The frequency distribution


"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\nX & f & f(\\bar{X}) & \\bar{X}f(\\bar{X})& \\bar{X}^2f(\\bar{X}) \\\\ \\hline\n10 & 3 & 1\/10 & 14\/20 & 196\/40 \\\\\n \\hdashline\n 12 & 2 & 1\/10 & 1\/20 & 1\/40 \\\\\n \\hdashline\n 13 & 4 & 1\/10 & 2\/20 & 4\/40 \\\\\n \\hdashline\n 14 & 3 & 1\/10 & 3\/20 & 9\/40 \\\\\n \\hdashline\n 15 & 3 & 1\/10 & 6\/20 & 36\/40 \\\\\n \\hdashline\n 16 & 3 & 1\/10 & 7\/20 & 49\/40 \\\\\n \\hdashline\n 17 & 3 & 2\/10 & 16\/20 & 128\/40 \\\\\n \\hdashline\n 18 & 5 & 1\/10 & 9\/20 & 81\/40 \\\\\n \\hdashline\n 19 & 4 & 1\/10 & 10\/20 & 100\/40 \\\\\n \\hdashline\n 20 & 3 & 1\/10 & 14\/20 & 196\/40 \\\\\n \\hdashline\n22 & 3 & 1\/10 & 14\/20 & 196\/40 \\\\\n \\hdashline\n24 & 3 & 1\/10 & 14\/20 & 196\/40 \\\\\n \\hdashline\n25 & 1 & 1\/10 & 14\/20 & 196\/40 \\\\\n \\hdashline\n27 & 2 & 1\/10 & 14\/20 & 196\/40 \\\\\n \\hdashline\n28 & 1 & 1\/10 & 14\/20 & 196\/40 \\\\\n \\hdashline\n30 & 1 & 1\/10 & 14\/20 & 196\/40 \\\\\n \\hdashline\n31 & 3 & 1\/10 & 14\/20 & 196\/40 \\\\\n \\hdashline\n32 & 3 & 1\/10 & 14\/20 & 196\/40 \\\\\n \\hdashline\n34 & 2 & 1\/10 & 14\/20 & 196\/40 \\\\\n \\hdashline\n35 & 2 & 1\/10 & 14\/20 & 196\/40 \\\\\n \\hdashline\n37 & 1 & 1\/10 & 14\/20 & 196\/40 \\\\\n \\hdashline\n38 & 1 & 1\/10 & 14\/20 & 196\/40 \\\\\n \\hdashline\n40 & 1 & 1\/10 & 14\/20 & 196\/40 \\\\\n \\hdashline\n43 & 1 & 1\/10 & 14\/20 & 196\/40 \\\\\n \\hdashline\n44 & 2 & 1\/10 & 14\/20 & 196\/40 \\\\\n \\hdashline\n Total & 60 & 1 & 68\/20 & 604\/40 \\\\ \\hline\n\\end{array}"

Mean


"mean=\\bar{X}=\\dfrac{1}{60}(10(3)+12(2)+13(4)+14(3)"




"+15(3)+16(3)+17(3)+18(5)+19(4)+20(3)"

"+22(3)+24(3)+25(1)+27(2)+28(1)+30(1)"

"+31(3)+32(3)+34(2)+35(2)+37(1)+38(1)"

"+40(1)+43(1)+44(2))=\\dfrac{683}{30}=22.76667"

Variance


"s^2=\\dfrac{1}{60-1}\\big(3(10-\\dfrac{683}{30})^2+...+2(44-\\dfrac{683}{30})^2)"

"\\approx86.85989"


Standard deviation


"s=\\sqrt{s^2}=\\sqrt{86.85989}\\approx9.31987"




"median=\\dfrac{19+20}{2}=19.5"

"Skewness \\ Coefficient = \\dfrac{3(mean-median)}{s}"

"\\approx \\dfrac{3(\\dfrac{683}{30}-19.5)}{9.31987}\\approx1.05152"

The distribution is positively skewed. A positive skew indicates a longer tail to the right.


"skewness=\\dfrac{n\\sum_i(X_i-\\bar{X})^3}{(n-1)(n-2)s^3}\\approx0.69245"



"curtosis=\\dfrac{n(n+1)\\sum_i(X_i-\\bar{X})^4}{(n-1)(n-2)(n-3)s^4}"

"-3\\cdot\\dfrac{(n-1)^2}{(n-2)(n-3)}\\approx-0.52650"

A platykurtic distribution shows a negative excess kurtosis. The kurtosis reveals a distribution with flat tails.

Significant skewness and kurtosis clearly indicate that data are not normal.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS