Answer to Question #175764 in Statistics and Probability for Denisse Bisuña

Question #175764

1.Compute the population proportion interval estimate given n, p, and the confidence level.

a. n = 300 and p = 0.40 with 95% confidence

b. n = 500 and p = 0.23 with 95% confidence

c. n = 420 and p = 0.61 with 90% confidence

d. n = 670 and p = 0.54 with 99% confidence

e. n = 710 and p = 0.63 with 99% confidence

2.Ismail conducted a poll survey in which 320 and 600 randomly selected voters indicated their preference for a certain candidate. Using 95% confidence level, what is the interval containing the true population proportion p of voters who prefer the candidate?

3.A random sample of 180 users of a new kind of organic shampoo yielded p = 0.64. Use a = 0.05.

a. What is the point estimate of p?

b. What is the interval estimate of p?

4.A random sample of 156 packets of cupcakes yield p = 0.76. Construct a 90% confidence interval for p.


1
Expert's answer
2021-04-14T13:16:20-0400

1.

(a) Given, n=300, p=0.4

    q=1-0.4=0.6


 Here "Z_{\\dfrac{\\alpha}{2}}=Z_{0.025}" =1.96


 Confidence level "=p\\pm Z_{\\frac{\\alpha}{2}}\\sqrt{\\dfrac{pq}{n}}"


           "=0.4\\pm 1.96 \\sqrt{\\dfrac{0.4\\times 0.6}{300}}"


"=0.4\\pm 0.0554\n\n\n\n =(0.3446,0.4554)"


(b) Given, n=500, p=0.23

    q=1-0.23=0.77


 Here "Z_{\\dfrac{\\alpha}{2}}=Z_{0.025}" =1.96


 Confidence level "=p\\pm Z_{\\frac{\\alpha}{2}}\\sqrt{\\dfrac{pq}{n}}"


           "=0.23\\pm 1.96 \\sqrt{\\dfrac{0.23\\times 0.77}{500}}"


"=0.23\\pm 0.0368\n\n\n\n =(0.1931,0.2668)"


(c) Given, n=420, p=0.61

    q=1-0.61=0.39


 Here "Z_{\\dfrac{\\alpha}{2}}=Z_{0.05}" =1.645


 Confidence level "=p\\pm Z_{\\frac{\\alpha}{2}}\\sqrt{\\dfrac{pq}{n}}"


           "=0.61\\pm 1.645 \\sqrt{\\dfrac{0.61\\times 0.39}{420}}"


"=0.61\\pm 0.0.03915\n\n\n =(0.5708,0.64915)"


(d) Given, n=670, p=0.54

    q=1-0.54=0.46


 Here "Z_{\\dfrac{\\alpha}{2}}=Z_{0.005}" =2.342


 Confidence level "=p\\pm Z_{\\frac{\\alpha}{2}}\\sqrt{\\dfrac{pq}{n}}"


           "=0.54\\pm 2.342 \\sqrt{\\dfrac{0.54\\times 0.46}{670}}"


"=0.54\\pm 0.01925\n\n\n\n =(0.5207,0.55925)"


(e) Given, n=710, p=0.63

    q=1-0.63=0.37


 Here "Z_{\\dfrac{\\alpha}{2}}=Z_{0.005}" =2.342


 Confidence level "=p\\pm Z_{\\frac{\\alpha}{2}}\\sqrt{\\dfrac{pq}{n}}"


           "=0.63\\pm 2.342 \\sqrt{\\dfrac{0.63\\times 0.37}{710}}"


"=0.63\\pm 0.042435\n\n\n\n =(0.58756,0.67243)"


(2). n=600, p=\dfrac{320}{600}=0.53

q=1-p=1-0.53=0.47


"Z_{\\frac{\\alpha}{2}}=Z_{\\frac{0.05}{2}}=z_{0.025}=1.96"



 Confidence level "=p\\pm Z_{\\frac{\\alpha}{2}}\\sqrt{\\dfrac{pq}{n}}"


"=0.53\\pm 1.96\\sqrt{\\dfrac{0.53\\times 0.47}{600}}"


"=0.53\\pm 0.0399=(0.49006,0.56993)"

(3). n=180, p=0.64

q=1-p=1-0.64=0.36


"Z_{\\frac{\\alpha}{2}}=Z_{\\frac{0.05}{2}}=z_{0.025}=1.96"


(i) Point estimate of "p =\\dfrac{p}{n}=\\dfrac{0.64}{180}=0.00355"


(ii) Interval estimates

 Confidence level "=p\\pm Z_{\\frac{\\alpha}{2}}\\sqrt{\\dfrac{pq}{n}}"


"=0.64\\pm 1.96\\sqrt{\\dfrac{0.64\\times 0.36}{180}}"


"=0.64\\pm 0.07012=(0.56987,0.71012)"

(4). Given, n=156, p=0.76

    q=1-0.76=0.24


 Here "Z_{\\dfrac{\\alpha}{2}}=Z_{0.05}" =1.645


 Confidence level "=p\\pm Z_{\\frac{\\alpha}{2}}\\sqrt{\\dfrac{pq}{n}}"


           "=0.76\\pm 1.645 \\sqrt{\\dfrac{0.76\\times 0.24}{156}}"


"=0.76\\pm \n0.05624\n\n\n =(0.70375,0.81624)"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS