Question #175764

1.Compute the population proportion interval estimate given n, p, and the confidence level.

a. n = 300 and p = 0.40 with 95% confidence

b. n = 500 and p = 0.23 with 95% confidence

c. n = 420 and p = 0.61 with 90% confidence

d. n = 670 and p = 0.54 with 99% confidence

e. n = 710 and p = 0.63 with 99% confidence

2.Ismail conducted a poll survey in which 320 and 600 randomly selected voters indicated their preference for a certain candidate. Using 95% confidence level, what is the interval containing the true population proportion p of voters who prefer the candidate?

3.A random sample of 180 users of a new kind of organic shampoo yielded p = 0.64. Use a = 0.05.

a. What is the point estimate of p?

b. What is the interval estimate of p?

4.A random sample of 156 packets of cupcakes yield p = 0.76. Construct a 90% confidence interval for p.


1
Expert's answer
2021-04-14T13:16:20-0400

1.

(a) Given, n=300, p=0.4

    q=1-0.4=0.6


 Here Zα2=Z0.025Z_{\dfrac{\alpha}{2}}=Z_{0.025} =1.96


 Confidence level =p±Zα2pqn=p\pm Z_{\frac{\alpha}{2}}\sqrt{\dfrac{pq}{n}}


           =0.4±1.960.4×0.6300=0.4\pm 1.96 \sqrt{\dfrac{0.4\times 0.6}{300}}


=0.4±0.0554=(0.3446,0.4554)=0.4\pm 0.0554 =(0.3446,0.4554)


(b) Given, n=500, p=0.23

    q=1-0.23=0.77


 Here Zα2=Z0.025Z_{\dfrac{\alpha}{2}}=Z_{0.025} =1.96


 Confidence level =p±Zα2pqn=p\pm Z_{\frac{\alpha}{2}}\sqrt{\dfrac{pq}{n}}


           =0.23±1.960.23×0.77500=0.23\pm 1.96 \sqrt{\dfrac{0.23\times 0.77}{500}}


=0.23±0.0368=(0.1931,0.2668)=0.23\pm 0.0368 =(0.1931,0.2668)


(c) Given, n=420, p=0.61

    q=1-0.61=0.39


 Here Zα2=Z0.05Z_{\dfrac{\alpha}{2}}=Z_{0.05} =1.645


 Confidence level =p±Zα2pqn=p\pm Z_{\frac{\alpha}{2}}\sqrt{\dfrac{pq}{n}}


           =0.61±1.6450.61×0.39420=0.61\pm 1.645 \sqrt{\dfrac{0.61\times 0.39}{420}}


=0.61±0.0.03915=(0.5708,0.64915)=0.61\pm 0.0.03915 =(0.5708,0.64915)


(d) Given, n=670, p=0.54

    q=1-0.54=0.46


 Here Zα2=Z0.005Z_{\dfrac{\alpha}{2}}=Z_{0.005} =2.342


 Confidence level =p±Zα2pqn=p\pm Z_{\frac{\alpha}{2}}\sqrt{\dfrac{pq}{n}}


           =0.54±2.3420.54×0.46670=0.54\pm 2.342 \sqrt{\dfrac{0.54\times 0.46}{670}}


=0.54±0.01925=(0.5207,0.55925)=0.54\pm 0.01925 =(0.5207,0.55925)


(e) Given, n=710, p=0.63

    q=1-0.63=0.37


 Here Zα2=Z0.005Z_{\dfrac{\alpha}{2}}=Z_{0.005} =2.342


 Confidence level =p±Zα2pqn=p\pm Z_{\frac{\alpha}{2}}\sqrt{\dfrac{pq}{n}}


           =0.63±2.3420.63×0.37710=0.63\pm 2.342 \sqrt{\dfrac{0.63\times 0.37}{710}}


=0.63±0.042435=(0.58756,0.67243)=0.63\pm 0.042435 =(0.58756,0.67243)


(2). n=600, p=\dfrac{320}{600}=0.53

q=1-p=1-0.53=0.47


Zα2=Z0.052=z0.025=1.96Z_{\frac{\alpha}{2}}=Z_{\frac{0.05}{2}}=z_{0.025}=1.96



 Confidence level =p±Zα2pqn=p\pm Z_{\frac{\alpha}{2}}\sqrt{\dfrac{pq}{n}}


=0.53±1.960.53×0.47600=0.53\pm 1.96\sqrt{\dfrac{0.53\times 0.47}{600}}


=0.53±0.0399=(0.49006,0.56993)=0.53\pm 0.0399=(0.49006,0.56993)

(3). n=180, p=0.64

q=1-p=1-0.64=0.36


Zα2=Z0.052=z0.025=1.96Z_{\frac{\alpha}{2}}=Z_{\frac{0.05}{2}}=z_{0.025}=1.96


(i) Point estimate of p=pn=0.64180=0.00355p =\dfrac{p}{n}=\dfrac{0.64}{180}=0.00355


(ii) Interval estimates

 Confidence level =p±Zα2pqn=p\pm Z_{\frac{\alpha}{2}}\sqrt{\dfrac{pq}{n}}


=0.64±1.960.64×0.36180=0.64\pm 1.96\sqrt{\dfrac{0.64\times 0.36}{180}}


=0.64±0.07012=(0.56987,0.71012)=0.64\pm 0.07012=(0.56987,0.71012)

(4). Given, n=156, p=0.76

    q=1-0.76=0.24


 Here Zα2=Z0.05Z_{\dfrac{\alpha}{2}}=Z_{0.05} =1.645


 Confidence level =p±Zα2pqn=p\pm Z_{\frac{\alpha}{2}}\sqrt{\dfrac{pq}{n}}


           =0.76±1.6450.76×0.24156=0.76\pm 1.645 \sqrt{\dfrac{0.76\times 0.24}{156}}


=0.76±0.05624=(0.70375,0.81624)=0.76\pm 0.05624 =(0.70375,0.81624)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS