1.Compute the population proportion interval estimate given n, p, and the confidence level.
a. n = 300 and p = 0.40 with 95% confidence
b. n = 500 and p = 0.23 with 95% confidence
c. n = 420 and p = 0.61 with 90% confidence
d. n = 670 and p = 0.54 with 99% confidence
e. n = 710 and p = 0.63 with 99% confidence
2.Ismail conducted a poll survey in which 320 and 600 randomly selected voters indicated their preference for a certain candidate. Using 95% confidence level, what is the interval containing the true population proportion p of voters who prefer the candidate?
3.A random sample of 180 users of a new kind of organic shampoo yielded p = 0.64. Use a = 0.05.
a. What is the point estimate of p?
b. What is the interval estimate of p?
4.A random sample of 156 packets of cupcakes yield p = 0.76. Construct a 90% confidence interval for p.
1.
(a) Given, n=300, p=0.4
q=1-0.4=0.6
Here "Z_{\\dfrac{\\alpha}{2}}=Z_{0.025}" =1.96
Confidence level "=p\\pm Z_{\\frac{\\alpha}{2}}\\sqrt{\\dfrac{pq}{n}}"
"=0.4\\pm 1.96 \\sqrt{\\dfrac{0.4\\times 0.6}{300}}"
"=0.4\\pm 0.0554\n\n\n\n =(0.3446,0.4554)"
(b) Given, n=500, p=0.23
q=1-0.23=0.77
Here "Z_{\\dfrac{\\alpha}{2}}=Z_{0.025}" =1.96
Confidence level "=p\\pm Z_{\\frac{\\alpha}{2}}\\sqrt{\\dfrac{pq}{n}}"
"=0.23\\pm 1.96 \\sqrt{\\dfrac{0.23\\times 0.77}{500}}"
"=0.23\\pm 0.0368\n\n\n\n =(0.1931,0.2668)"
(c) Given, n=420, p=0.61
q=1-0.61=0.39
Here "Z_{\\dfrac{\\alpha}{2}}=Z_{0.05}" =1.645
Confidence level "=p\\pm Z_{\\frac{\\alpha}{2}}\\sqrt{\\dfrac{pq}{n}}"
"=0.61\\pm 1.645 \\sqrt{\\dfrac{0.61\\times 0.39}{420}}"
"=0.61\\pm 0.0.03915\n\n\n =(0.5708,0.64915)"
(d) Given, n=670, p=0.54
q=1-0.54=0.46
Here "Z_{\\dfrac{\\alpha}{2}}=Z_{0.005}" =2.342
Confidence level "=p\\pm Z_{\\frac{\\alpha}{2}}\\sqrt{\\dfrac{pq}{n}}"
"=0.54\\pm 2.342 \\sqrt{\\dfrac{0.54\\times 0.46}{670}}"
"=0.54\\pm 0.01925\n\n\n\n =(0.5207,0.55925)"
(e) Given, n=710, p=0.63
q=1-0.63=0.37
Here "Z_{\\dfrac{\\alpha}{2}}=Z_{0.005}" =2.342
Confidence level "=p\\pm Z_{\\frac{\\alpha}{2}}\\sqrt{\\dfrac{pq}{n}}"
"=0.63\\pm 2.342 \\sqrt{\\dfrac{0.63\\times 0.37}{710}}"
"=0.63\\pm 0.042435\n\n\n\n =(0.58756,0.67243)"
(2). n=600, p=\dfrac{320}{600}=0.53
q=1-p=1-0.53=0.47
"Z_{\\frac{\\alpha}{2}}=Z_{\\frac{0.05}{2}}=z_{0.025}=1.96"
Confidence level "=p\\pm Z_{\\frac{\\alpha}{2}}\\sqrt{\\dfrac{pq}{n}}"
"=0.53\\pm 1.96\\sqrt{\\dfrac{0.53\\times 0.47}{600}}"
"=0.53\\pm 0.0399=(0.49006,0.56993)"
(3). n=180, p=0.64
q=1-p=1-0.64=0.36
"Z_{\\frac{\\alpha}{2}}=Z_{\\frac{0.05}{2}}=z_{0.025}=1.96"
(i) Point estimate of "p =\\dfrac{p}{n}=\\dfrac{0.64}{180}=0.00355"
(ii) Interval estimates
Confidence level "=p\\pm Z_{\\frac{\\alpha}{2}}\\sqrt{\\dfrac{pq}{n}}"
"=0.64\\pm 1.96\\sqrt{\\dfrac{0.64\\times 0.36}{180}}"
"=0.64\\pm 0.07012=(0.56987,0.71012)"
(4). Given, n=156, p=0.76
q=1-0.76=0.24
Here "Z_{\\dfrac{\\alpha}{2}}=Z_{0.05}" =1.645
Confidence level "=p\\pm Z_{\\frac{\\alpha}{2}}\\sqrt{\\dfrac{pq}{n}}"
"=0.76\\pm 1.645 \\sqrt{\\dfrac{0.76\\times 0.24}{156}}"
"=0.76\\pm \n0.05624\n\n\n =(0.70375,0.81624)"
Comments
Leave a comment