Plant scientists developed different varieties of corns that have a rich content of lysine which is a nutritious animal feed. A group of chicks were given this food to test the quality. The distribution of the weight gains (in grams) of these chicks are shown below:
Weight gains (in grams) Frequency
318 - 335 4
336 - 353 5
354 - 371 2
372 - 389 3
390 – 407 2
408 – 425 3
426 - 443 1
Find:
(a) the mean weight gains
(b) the median
(c) the variance for the above frequency intervals
(d) the standard deviation
Construct a table
"\\begin{array}{|c|c|c|c|}\\hline\n\\rm{Intervals} & \\rm{Frequencies} & \\rm{Midpoints\\ of\\ intervals}&\\rm{Cumulative\\ frequencies}\\\\ \\hline\n318 - 335& 4& 326.5& 4\\\\ \\hline\n336 - 353& 5& 344.5& 9\\\\ \\hline\n354 - 371& 2& 362.5& 11\\\\ \\hline\n372 - 389& 3& 380.5& 14\\\\ \\hline\n390 - 407& 2& 398.5& 16\\\\ \\hline\n408 - 425& 3& 416.5& 19\\\\ \\hline\n426 - 443& 1& 434.5& 20\\\\ \\hline\n\\end{array}"
The total number of observations is
"n=4+5+2+3+2+3+1=20"
(a) The mean weight gains is
"\\overline{x}=\\dfrac{1}{20}\\cdot(4\\cdot326.5+5\\cdot344.5+2\\cdot362.5+"
"3\\cdot380.5+2\\cdot398.5+3\\cdot416.5+1\\cdot434.5)="
"\\dfrac{1}{20}\\cdot7376=368.8"
(b) The median
The first interval with cumulative frequence ">\\dfrac{n}{2}" is "[354-371]" . Previous interval has the frequency "=9" . The length of any interval is "18" . The total number of observations is "20". So the median is
"Me=354+18\\cdot\\dfrac{\\frac12\\cdot20-9}{2}=363"
(c) The variance
"\\bold{Var}[X]=\\overline{x^2}-\\overline{x}^2="
"\\dfrac{1}{20}\\cdot(4\\cdot(326.5)^2+5\\cdot(344.5)^2+2\\cdot(362.5)^2+"
"3\\cdot(380.5)^+2\\cdot(398.5)^2+3\\cdot(416.5)^2+1\\cdot(434.5)^2)-"
"(368.8)^2=" "137,188.75-136,013.44=1,175.31"
(d) The standard deviation
"s=\\sqrt{\\bold{Var}[X]}=\\sqrt{1,175.31}\\approx34.28"
Comments
Leave a comment