find the point estimate of the population parameter μ, and the standard deviation for each of the following sets of data. show your computations.
78 75 86 82 70 85 83 86
80 92 82 85 80 80 84 86
90 88 90 78 83 90 86 84
75 85 77 88 85 90 85 83
83 86 83 84 86 92 85 80
76 88 79 84 80 88 80 88
8 8.6 12 10 8 10.5 8 10.6
8.6 10.5 7.4 6.4 12.2 6.5 12 6.8
7.5 8 11 8.5 9.5 12 11.5 12.5
10.4 7 6.8 7 7 10.5 7 7
7 8.3 7 13.5 12.5 7 7 12.5 10 6.8 10.2 6 6.5 10.3 6.8 6.8
1.Mean:
"\\mu=\\frac{\\sum x_i}{N}"
"\\mu=\\frac{2\\cdot78+2\\cdot75+6\\cdot86+2\\cdot82+70+6\\cdot85+4\\cdot83+6\\cdot80+2\\cdot92+4\\cdot84+4\\cdot90+5\\cdot88+77+76+79}{48}=\\frac{3930}{48}="
"=81.875\\approx 82"
Standard deviation:
"\\sigma=\\sqrt{\\frac{\\sum(x_i-\\mu)^2}{N}}"
"\\sigma=\\sqrt{\\frac{2\\cdot4^2+2\\cdot7^2+6\\cdot4^2+12^2+6\\cdot3^2+4+6\\cdot2^2+2\\cdot10^2+4\\cdot2^2+4\\cdot8^2+5\\cdot6^2+5^2+6^2+3^2}{48}}=4.95"
2.
"\\mu=\\frac{5\\cdot8+2\\cdot8.6+3\\cdot12+2\\cdot10+3\\cdot10.5+10.6+7.4+6.4+12.2+2\\cdot6.5+5\\cdot6.8+7.5+11+8.5+9.5+11.5+3\\cdot12.5}{48}+"
"+\\frac{10.4+9\\cdot7+8.3+13.5+10.2+6+10.3}{48}=\\frac{435.5}{48}=9.07\\approx9.1"
"\\sigma=\\sqrt{\\frac{5\\cdot1.1^2+2\\cdot0.5^2+3\\cdot2.9^2+2\\cdot0.9^2+3\\cdot1.4^2+1.5^2+1.7^2+2.7^2+3.1^2+2\\cdot2.6^2+5\\cdot2.3^2+1.6^2+1.9^2+0.6^2+0.4^2+}{48}}"
"\\sqrt{\\frac{+2.4^2+3\\cdot3.4^2+1.3^2+9\\cdot2.1^2+0.8^2+4.4^2+1.1^2+3.1^2+1.2^2}{48}}=6.675"
Comments
Leave a comment