Answer to Question #174109 in Statistics and Probability for Denisse Bisuña

Question #174109

Given the population: 1, 3, 4, 6, and 8; and suppose samples of size 3 are drawn from this population:

1. What is the mean and standard deviation of the population?

2. How many different samples of size n=3 can be drawn from the population? List them with their corresponding means.

3. Construct the sampling distribution of the sample means.

4. What is the mean of the sampling distribution of the sample means? Compare this to the mean of the population.

5. What is the standard deviation of the sampling distribution of the sample means? Compare this to the standard deviation of the population.



1
Expert's answer
2021-03-25T01:58:49-0400

1. Mean


μ=1+3+4+6+85=4.4\mu=\dfrac{1+3+4+6+8}{5}=4.4

Variance

σ2=15((14.4)2+(34.4)2+(44.4)2\sigma^2=\dfrac{1}{5}\big((1-4.4)^2+(3-4.4)^2+(4-4.4)^2

(64.4)2+(84.4)2)=5.84(6-4.4)^2+(8-4.4)^2\big)=5.84


Standard deviation


σ=σ2=5.842.4166\sigma=\sqrt{\sigma^2}=\sqrt{5.84}\approx2.4166



2. We have population values 1,3,4,6,8,1,3,4,6,8, population size N=5N=5 and sample size n=2.n=2. Thus, the number of possible samples which can be drawn without replacement is


(Nn)=(52)=10\dbinom{N}{n}=\dbinom{5}{2}=10SampleSampleSample meanNo.values(Xˉ)11,3,48/321,3,610/331,3,8441,4,611/351,4,813/361,6,8573,4,613/383,4,8593,6,817/3104,6,86\def\arraystretch{1.5} \begin{array}{c:c:c} Sample & Sample & Sample \ mean \\ No. & values & (\bar{X}) \\ \hline 1 & 1,3,4 & 8/3 \\ \hdashline 2 & 1,3,6 & 10/3 \\ \hdashline 3 & 1,3,8 & 4 \\ \hdashline 4 & 1,4,6 & 11/3 \\ \hdashline 5 & 1,4,8 & 13/3 \\ \hdashline 6 & 1,6,8 & 5 \\ \hdashline 7 & 3,4,6 & 13/3 \\ \hdashline 8 & 3,4,8 & 5 \\ \hdashline 9 & 3,6,8 & 17/3 \\ \hdashline 10 & 4,6,8 & 6 \\ \hline \end{array}

3. The sampling distribution of the sample means.


Xˉff(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)8/311/108/3064/9010/311/1010/30100/9011/311/1011/30121/90411/1012/30144/9013/322/1026/30338/90522/1030/30450/9017/311/1017/30289/90611/1018/30324/90Total101132/301830/90\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline 8/3 & 1& 1/10 & 8/30 & 64/90 \\ \hdashline 10/3 & 1& 1/10 & 10/30 & 100/90 \\ \hdashline 11/3 & 1& 1/10 & 11/30 & 121/90 \\ \hdashline 4 & 1& 1/10 & 12/30 & 144/90 \\ \hdashline 13/3 & 2& 2/10 & 26/30 & 338/90 \\ \hdashline 5 & 2& 2/10 & 30/30 & 450/90 \\ \hdashline 17/3 & 1& 1/10 & 17/30 & 289/90 \\ \hdashline 6 & 1& 1/10 & 18/30 & 324/90 \\ \hdashline Total & 10 & 1 & 132/30 & 1830/90 \\ \hline \end{array}

4.


E(Xˉ)=Xˉf(Xˉ)=13230=4.4E(\bar{X})=\sum\bar{X}f(\bar{X})=\dfrac{132}{30}=4.4

The mean of the sampling distribution of the sample means is equal to the

the mean of the population.


E(Xˉ)=4.4=μE(\bar{X})=4.4=\mu

5.

Var(Xˉ)=Xˉ2f(Xˉ)(Xˉf(Xˉ))2Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2

=183090(13230)2=876900=7375=\dfrac{1830}{90}-(\dfrac{132}{30})^2=\dfrac{876}{900}=\dfrac{73}{75}

Var(Xˉ)=73750.9866\sqrt{Var(\bar{X})}=\sqrt{\dfrac{73}{75}}\approx0.9866

Verification:

Var(Xˉ)=σ2n(NnN1)=5.843(5351)Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{5.84}{3}(\dfrac{5-3}{5-1})

=5.846=7375,True=\dfrac{5.84}{6}=\dfrac{73}{75}, True


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment