Answer to Question #173598 in Statistics and Probability for ANJU JAYACHANDRAN

Question #173598

8b) Suppose from a total of 120 guava trees, 5 clusters of 4 trees each selected and the

yield (in kg) is recorded below:

Cluster Trees

1 2 3 4

1 5 4 2 15

2 11 1 4 7

3 26 10 19 11

4 7 15 12 10

5 2 22 8 6

Estimate the average yield per tree and its standard error.


1
Expert's answer
2021-05-10T17:18:34-0400

Solution:



Let YiY_i denotes the yield in ithi^{th} tree.

So, Y1=515=10.2Y_1=\dfrac{51}{5}=10.2

Y2=525=10.4Y3=455=9Y4=495=9.8Y_2=\dfrac{52}{5}=10.4 \\ Y_3=\dfrac{45}{5}=9 \\ Y_4=\dfrac{49}{5}=9.8

Now, standard deviation for each tree, σi=Σj=15(YjYiˉ)2n1\sigma_i=\sqrt{\dfrac{\Sigma_{j=1}^5(Y_j-\bar{Y_i})^2}{n-1}}

So, σ1=Σj=15(Yj10.2)251\sigma_1=\sqrt{\dfrac{\Sigma_{j=1}^5(Y_j-10.2)^2}{5-1}}

=(510.2)2+(1110.2)2+(2610.2)2+(710.2)2+(210.2)24=\sqrt{\dfrac{(5-10.2)^2+(11-10.2)^2+(26-10.2)^2+(7-10.2)^2+(2-10.2)^2}{4}}

=9.418=9.418

Similarly, σ2=8.444,σ3=6.782,σ4=3.564\sigma_2=8.444,\sigma_3=6.782,\sigma_4=3.564

Now, standard error, σyiˉ=σin\sigma_{\bar{y_i}}=\dfrac{\sigma_i}{n}

So,

σy1ˉ=σ1n=9.4185=1.8836σy2ˉ=σ2n=8.4445=1.6888σy3ˉ=σ3n=6.7825=1.3564σy4ˉ=σ4n=3.5645=0.7128\sigma_{\bar{y_1}}=\dfrac{\sigma_1}{n}=\frac{9.418}{5}=1.8836 \\ \sigma_{\bar{y_2}}=\dfrac{\sigma_2}{n}=\frac{8.444}{5}=1.6888 \\ \sigma_{\bar{y_3}}=\dfrac{\sigma_3}{n}=\frac{6.782}{5}=1.3564 \\ \sigma_{\bar{y_4}}=\dfrac{\sigma_4}{n}=\frac{3.564}{5}=0.7128


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment