8b) Suppose from a total of 120 guava trees, 5 clusters of 4 trees each selected and the
yield (in kg) is recorded below:
Cluster Trees
1 2 3 4
1 5 4 2 15
2 11 1 4 7
3 26 10 19 11
4 7 15 12 10
5 2 22 8 6
Estimate the average yield per tree and its standard error.
Solution:
Let "Y_i" denotes the yield in "i^{th}" tree.
So, "Y_1=\\dfrac{51}{5}=10.2"
"Y_2=\\dfrac{52}{5}=10.4\n\\\\ Y_3=\\dfrac{45}{5}=9\n\\\\ Y_4=\\dfrac{49}{5}=9.8"
Now, standard deviation for each tree, "\\sigma_i=\\sqrt{\\dfrac{\\Sigma_{j=1}^5(Y_j-\\bar{Y_i})^2}{n-1}}"
So, "\\sigma_1=\\sqrt{\\dfrac{\\Sigma_{j=1}^5(Y_j-10.2)^2}{5-1}}"
"=\\sqrt{\\dfrac{(5-10.2)^2+(11-10.2)^2+(26-10.2)^2+(7-10.2)^2+(2-10.2)^2}{4}}"
"=9.418"
Similarly, "\\sigma_2=8.444,\\sigma_3=6.782,\\sigma_4=3.564"
Now, standard error, "\\sigma_{\\bar{y_i}}=\\dfrac{\\sigma_i}{n}"
So,
"\\sigma_{\\bar{y_1}}=\\dfrac{\\sigma_1}{n}=\\frac{9.418}{5}=1.8836\n\\\\ \\sigma_{\\bar{y_2}}=\\dfrac{\\sigma_2}{n}=\\frac{8.444}{5}=1.6888\n\\\\ \\sigma_{\\bar{y_3}}=\\dfrac{\\sigma_3}{n}=\\frac{6.782}{5}=1.3564\n\\\\ \\sigma_{\\bar{y_4}}=\\dfrac{\\sigma_4}{n}=\\frac{3.564}{5}=0.7128"
Comments
Leave a comment