X ~ N(5.02, 0.30^2)
n = 100
a.
P ( 4.96 < X ˉ < 5.00 ) = P ( 4.96 − 5.02 0.3 100 < Z < 5.00 − 5.02 0.3 100 ) = P ( 4.96 − 5.02 0.3 100 < Z < 5.00 − 5.02 0.3 100 ) = P ( − 2.00 < Z < − 0.666 ) = P ( Z < − 0.666 ) − P ( Z < − 2 ) = 0.2527 − 0.0227 = 0.2300 = 23.00 % P(4.96< \bar{X}<5.00) = P(\frac{4.96-5.02}{\frac{0.3}{\sqrt{100}}} <Z< \frac{5.00-5.02}{\frac{0.3}{\sqrt{100}}}) \\
= P(\frac{4.96-5.02}{\frac{0.3}{\sqrt{100}}} <Z< \frac{5.00-5.02}{\frac{0.3}{\sqrt{100}}}) \\
= P(-2.00 < Z < -0.666) \\
= P(Z< -0.666) -P(Z< -2) \\
= 0.2527 -0.0227 \\
= 0.2300 \\
= 23.00 \; \% P ( 4.96 < X ˉ < 5.00 ) = P ( 100 0.3 4.96 − 5.02 < Z < 100 0.3 5.00 − 5.02 ) = P ( 100 0.3 4.96 − 5.02 < Z < 100 0.3 5.00 − 5.02 ) = P ( − 2.00 < Z < − 0.666 ) = P ( Z < − 0.666 ) − P ( Z < − 2 ) = 0.2527 − 0.0227 = 0.2300 = 23.00 %
b.
P ( X ˉ > 5.10 ) = 1 − P ( X ˉ < 5.1 ) = 1 − P ( Z < x − μ σ n ) = 1 − P ( Z < 5.10 − 5.02 0.3 100 ) = 1 − P ( Z < 2.666 ) = 1 − 0.9961 = 0.0039 = 0.39 % P(\bar{X}>5.10) = 1 -P(\bar{X}<5.1) \\
= 1 -P(Z< \frac{x-μ}{\frac{σ}{\sqrt{n}}}) \\
= 1 - P(Z< \frac{5.10-5.02}{\frac{0.3}{\sqrt{100}}}) \\
= 1 -P(Z<2.666) \\
= 1 -0.9961 \\
= 0.0039 \\
= 0.39 \; \% P ( X ˉ > 5.10 ) = 1 − P ( X ˉ < 5.1 ) = 1 − P ( Z < n σ x − μ ) = 1 − P ( Z < 100 0.3 5.10 − 5.02 ) = 1 − P ( Z < 2.666 ) = 1 − 0.9961 = 0.0039 = 0.39 %
Comments