1) Check
∫−∞∞f(x)dx=∫−1143(1−x2)dx
=[43(x−3x3)]1−1=1
P(400−C≤L≤400+C)=∫−CC43(1−x2)dx
=[43(x−3x3)]C−C=23C−21C3=1611
C3−3C+811=0
C3−81−3(C−21)=0
(C−21)(C2+21C+41−3)=0,−1≤C≤1 Then C=21
2)
E(X)=∫−∞∞xf(x)dx
=∫−1143x(1−x2)dx
=[163(2x2−x4]1−1=0
E(L)=E(400+X)=400+E(X)=400
E(X2)=∫−∞∞x2f(x)dx
=∫−1143x2(1−x2)dx
=[201(5x3−3x5]1−1=51
Var(X)=E(X2)−(E(X))2=51−02=51
Var(L)=Var(400+X)=Var(X)=51
3)
E(2L+5)=2E(L)+5=2⋅400+5=805
Var(2L+5)=22⋅Var(L)=54
Comments