Question #171935
Suppose that certain bolts have length L=400+X mm, where X is a random variable with density f(x)=3/4(1-x^2)/4. -1>= x >=1
1) determine C so that the probability 11/16, a bolt will have length between 400-C and 400+C
2) find the mean and variance of Bolt L
3) Find the mean and variance of 2L+5
1
Expert's answer
2021-03-19T04:18:51-0400

1) Check


f(x)dx=1134(1x2)dx\displaystyle\int_{-\infin}^{\infin}f(x)dx=\displaystyle\int_{-1}^1\dfrac{3}{4}(1-x^2)dx

=[34(xx33)]11=1=[\dfrac{3}{4}(x-\dfrac{x^3}{3})]\begin{matrix} 1 \\ -1\end{matrix}=1

P(400CL400+C)=CC34(1x2)dxP(400-C\leq L\leq 400+C)=\displaystyle\int_{-C}^C\dfrac{3}{4}(1-x^2)dx

=[34(xx33)]CC=32C12C3=1116=[\dfrac{3}{4}(x-\dfrac{x^3}{3})]\begin{matrix} C \\ -C\end{matrix}=\dfrac{3}{2}C-\dfrac{1}{2}C^3=\dfrac{11}{16}

C33C+118=0C^3-3C+\dfrac{11}{8}=0

C3183(C12)=0C^3-\dfrac{1}{8}-3(C-\dfrac{1}{2})=0

(C12)(C2+12C+143)=0,1C1(C-\dfrac{1}{2})(C^2+\dfrac{1}{2}C+\dfrac{1}{4}-3)=0, -1\leq C\leq 1

Then C=12C=\dfrac{1}{2}


2)


E(X)=xf(x)dxE(X)=\displaystyle\int_{-\infin}^{\infin}xf(x)dx

=1134x(1x2)dx=\displaystyle\int_{-1}^1\dfrac{3}{4}x(1-x^2)dx

=[316(2x2x4]11=0=[\dfrac{3}{16}(2x^2-x^4]\begin{matrix} 1 \\ -1\end{matrix}=0

E(L)=E(400+X)=400+E(X)=400E(L)=E(400+X)=400+E(X)=400


E(X2)=x2f(x)dxE(X^2)=\displaystyle\int_{-\infin}^{\infin}x^2f(x)dx

=1134x2(1x2)dx=\displaystyle\int_{-1}^1\dfrac{3}{4}x^2(1-x^2)dx

=[120(5x33x5]11=15=[\dfrac{1}{20}(5x^3-3x^5]\begin{matrix} 1 \\ -1\end{matrix}=\dfrac{1}{5}

Var(X)=E(X2)(E(X))2=1502=15Var(X)=E(X^2)-(E(X))^2=\dfrac{1}{5}-0^2 =\dfrac{1}{5}

Var(L)=Var(400+X)=Var(X)=15Var(L)=Var(400+X)=Var(X)=\dfrac{1}{5}

3)


E(2L+5)=2E(L)+5=2400+5=805E(2L+5)=2E(L)+5=2\cdot 400+5=805

Var(2L+5)=22Var(L)=45Var(2L+5)=2^2\cdot Var(L)=\dfrac{4}{5}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS