1) Check
"=[\\dfrac{3}{4}(x-\\dfrac{x^3}{3})]\\begin{matrix}\n 1 \\\\\n -1\\end{matrix}=1"
"P(400-C\\leq L\\leq 400+C)=\\displaystyle\\int_{-C}^C\\dfrac{3}{4}(1-x^2)dx"
"=[\\dfrac{3}{4}(x-\\dfrac{x^3}{3})]\\begin{matrix}\n C \\\\\n -C\\end{matrix}=\\dfrac{3}{2}C-\\dfrac{1}{2}C^3=\\dfrac{11}{16}"
"C^3-3C+\\dfrac{11}{8}=0"
"C^3-\\dfrac{1}{8}-3(C-\\dfrac{1}{2})=0"
"(C-\\dfrac{1}{2})(C^2+\\dfrac{1}{2}C+\\dfrac{1}{4}-3)=0, -1\\leq C\\leq 1"
Then "C=\\dfrac{1}{2}"
2)
"=\\displaystyle\\int_{-1}^1\\dfrac{3}{4}x(1-x^2)dx"
"=[\\dfrac{3}{16}(2x^2-x^4]\\begin{matrix}\n 1 \\\\\n -1\\end{matrix}=0"
"E(L)=E(400+X)=400+E(X)=400"
"=\\displaystyle\\int_{-1}^1\\dfrac{3}{4}x^2(1-x^2)dx"
"=[\\dfrac{1}{20}(5x^3-3x^5]\\begin{matrix}\n 1 \\\\\n -1\\end{matrix}=\\dfrac{1}{5}"
"Var(X)=E(X^2)-(E(X))^2=\\dfrac{1}{5}-0^2 =\\dfrac{1}{5}"
"Var(L)=Var(400+X)=Var(X)=\\dfrac{1}{5}"
3)
"Var(2L+5)=2^2\\cdot Var(L)=\\dfrac{4}{5}"
Comments
Leave a comment