If the chance of being defective bottles of medicine produced by a manufacturer is 1/1000. the bottles are packed in boxes containing 500 bottles. A drug manufacturer buys 100 boxes from the producer of bottles. Find how many boxes contain i) no defectives (ii) less than 2 defectives bottle.
λ=0.001×500=0.5λ = 0.001 \times 500 = 0.5λ=0.001×500=0.5
i) P(X=0)=e−0.5×0.500!=e−0.5=0.606P(X=0) = e^{-0.5} \times \frac{0.5^0}{0!} = e^{-0.5} = 0.606P(X=0)=e−0.5×0!0.50=e−0.5=0.606
N=100×0.606=60.6≈61N = 100 \times 0.606 = 60.6 ≈ 61N=100×0.606=60.6≈61
ii) P(X<2)=P(X=0)+P(X=1)+P(X=2)P(X<2) = P(X=0) + P(X=1) + P(X=2)P(X<2)=P(X=0)+P(X=1)+P(X=2)
P(X=1)=e−0.5×0.511!=0.5e−0.5P(X=2)=e−0.5×0.522!=0.125e−0.5P(X<2)=e−0.5+0.5e−0.5+0.125e−0.5=1.625e−0.5=0.9856N=100(1−0.9856)=1.44≈2P(X=1) = e^{-0.5} \times \frac{0.5^1}{1!} = 0.5e^{-0.5} \\ P(X=2) = e^{-0.5} \times \frac{0.5^2}{2!} = 0.125e^{-0.5} \\ P(X<2) = e^{-0.5} + 0.5e^{-0.5} + 0.125e^{-0.5} = 1.625e^{-0.5} = 0.9856 \\ N = 100(1 -0.9856) = 1.44 ≈ 2P(X=1)=e−0.5×1!0.51=0.5e−0.5P(X=2)=e−0.5×2!0.52=0.125e−0.5P(X<2)=e−0.5+0.5e−0.5+0.125e−0.5=1.625e−0.5=0.9856N=100(1−0.9856)=1.44≈2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment