Question #170262

A random sample is drawn from a population of unknown standard deviation. Construct a 99% confidence interval for the population mean based on the information given:

a. N=49 ×=17.1 0=2.1

b. n=169 ×=17.1 0=2.1


1
Expert's answer
2021-03-09T08:08:49-0500

a. The provided sample mean is xˉ=17.1\bar{x}=17.1  and the sample standard deviation is s=2.1.s=2.1. The size of the sample is n=49n=49 and the required confidence level is 99%.99\%.

The number of degrees of freedom are df=n1=491=48,df=n-1=49-1=48, and the significance level is α=0.01.\alpha=0.01.

Based on the provided information, the critical tt -value for α=0.01\alpha=0.01 and df=48df=48 degrees of freedom is tc=2.682204.t_c=2.682204.

The 99% confidence for the population mean μ\mu  is computed using the following expression


CI=(xˉtc×sn,xˉ+tc×sn)CI=(\bar{x}-\dfrac{t_c\times s}{\sqrt{n}},\bar{x}+\dfrac{t_c\times s}{\sqrt{n}} )

CI=(17.12.682204×2.149,17.12.682204×2.149)CI=(17.1-\dfrac{2.682204\times 2.1}{\sqrt{49}},17.1-\dfrac{2.682204\times 2.1}{\sqrt{49}} )

=(16.2953,17.9047)=(16.2953, 17.9047)

b. The provided sample mean is xˉ=17.1\bar{x}=17.1  and the sample standard deviation is s=2.1.s=2.1. The size of the sample is n=169n=169 and the required confidence level is 99%.99\%.

The number of degrees of freedom are df=n1=1691=168,df=n-1=169-1=168, and the significance level is α=0.01.\alpha=0.01.

Based on the provided information, the critical tt -value for α=0.01\alpha=0.01 and df=168df=168 degrees of freedom is tc=2.60541.t_c=2.60541.

The 99% confidence for the population mean μ\mu  is computed using the following expression


CI=(xˉtc×sn,xˉ+tc×sn)CI=(\bar{x}-\dfrac{t_c\times s}{\sqrt{n}},\bar{x}+\dfrac{t_c\times s}{\sqrt{n}} )

CI=(17.12.60541×2.1169,17.12.60541×2.1169)CI=(17.1-\dfrac{2.60541\times 2.1}{\sqrt{169}},17.1-\dfrac{2.60541\times 2.1}{\sqrt{169}} )

=(16.6791,17.5209)=(16.6791, 17.5209)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS