P r ( X < x ) = Φ ( x − m σ ) Pr(X < x) = \Phi(\frac{x - m}{\sigma}) P r ( X < x ) = Φ ( σ x − m )
where m = 50 , σ = 8 , m = 50, \sigma = 8, m = 50 , σ = 8 ,
Φ ( x ) = P r ( X < x ) = ∫ − ∞ x e − t 2 2 d t 2 π \Phi(x) = Pr(X < x) = \int_{-\infty}^{x} e^{\frac{-t^2}{2}}\frac{dt}{\sqrt{2\pi}} Φ ( x ) = P r ( X < x ) = ∫ − ∞ x e 2 − t 2 2 π d t is the cumulative probability function of the normal distribution with mean = 0 and standard deviation= 1
a)P r ( X ≥ 52 ) = 1 − P r ( X < 52 ) = 1 − Φ ( 52 − 50 8 ) = 0.4013 Pr(X \geq 52) = 1 - Pr(X < 52) =1 - \Phi(\frac{52 - 50}{8}) = 0.4013 P r ( X ≥ 52 ) = 1 − P r ( X < 52 ) = 1 − Φ ( 8 52 − 50 ) = 0.4013
b) P r ( X < 40 ) = Φ ( 40 − 50 8 ) = 0.1056 Pr(X < 40) =\Phi(\frac{40 - 50}{8}) = 0.1056 P r ( X < 40 ) = Φ ( 8 40 − 50 ) = 0.1056
c)P r ( X = 40 ) = 0 Pr(X = 40) =0 P r ( X = 40 ) = 0 because normal distribution is continious
d)P r ( X > 40 ) = 1 − Φ ( 40 − 50 8 ) = 0.8944 Pr(X > 40) = 1 - \Phi(\frac{40 - 50}{8}) = 0.8944 P r ( X > 40 ) = 1 − Φ ( 8 40 − 50 ) = 0.8944
e) P r ( 35 ≤ X ≤ 64 ) = Φ ( 64 − 50 8 ) − Φ ( 35 − 50 8 ) = 0.9299 Pr(35 \leq X \leq 64) =\Phi(\frac{64 - 50}{8}) - \Phi(\frac{35 - 50}{8}) = 0.9299 P r ( 35 ≤ X ≤ 64 ) = Φ ( 8 64 − 50 ) − Φ ( 8 35 − 50 ) = 0.9299
f)P r ( 32 ≤ X ≤ 37 ) = Φ ( 37 − 50 8 ) − Φ ( 32 − 50 8 ) = 0.0393 Pr(32 \leq X \leq 37) =\Phi(\frac{37 - 50}{8}) - \Phi(\frac{32 - 50}{8}) = 0.0393 P r ( 32 ≤ X ≤ 37 ) = Φ ( 8 37 − 50 ) − Φ ( 8 32 − 50 ) = 0.0393
Comments