Question #169477

Let X be a normal random variable with a mean of 50 and a standard deviation of 8. Find the following probabilities:

a) P( X ≥ 52 )

b) P( X < 40 )

c) P(X =40 )

d) P( X > 40 )

e) P( 35 ≤ X ≤ 64 )

f) P( 32 ≤ X ≤ 37 )


1
Expert's answer
2021-03-12T01:00:48-0500

Pr(X<x)=Φ(xmσ)Pr(X < x) = \Phi(\frac{x - m}{\sigma})

where m=50,σ=8,m = 50, \sigma = 8,

Φ(x)=Pr(X<x)=xet22dt2π\Phi(x) = Pr(X < x) = \int_{-\infty}^{x} e^{\frac{-t^2}{2}}\frac{dt}{\sqrt{2\pi}} is the cumulative probability function of the normal distribution with mean = 0 and standard deviation= 1


a)Pr(X52)=1Pr(X<52)=1Φ(52508)=0.4013Pr(X \geq 52) = 1 - Pr(X < 52) =1 - \Phi(\frac{52 - 50}{8}) = 0.4013

b) Pr(X<40)=Φ(40508)=0.1056Pr(X < 40) =\Phi(\frac{40 - 50}{8}) = 0.1056

c)Pr(X=40)=0Pr(X = 40) =0 because normal distribution is continious

d)Pr(X>40)=1Φ(40508)=0.8944Pr(X > 40) = 1 - \Phi(\frac{40 - 50}{8}) = 0.8944

e) Pr(35X64)=Φ(64508)Φ(35508)=0.9299Pr(35 \leq X \leq 64) =\Phi(\frac{64 - 50}{8}) - \Phi(\frac{35 - 50}{8}) = 0.9299

f)Pr(32X37)=Φ(37508)Φ(32508)=0.0393Pr(32 \leq X \leq 37) =\Phi(\frac{37 - 50}{8}) - \Phi(\frac{32 - 50}{8}) = 0.0393


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS