Question #169476

Use Cumulative Standardized Normal Probability table to find the value z* for which:

a) P( Z ≤ z*) = 0.95

b) P( Z ≤ z*) = 0.2

c) P( Z ≤ z*) = 0.25

d) P( Z ≥ z*) = 0.9

e) P( 0 ≤ Z ≤ z*) = 0.41

f) P( -z* ≤ Z ≤ z*) = 0.88


1
Expert's answer
2021-03-11T14:08:23-0500

Using the table of the values of Laplace function Φ(z)=12π0zet22dt we get:a) P{Zz}=0.95Φ(z)=0.95/2=0.475z1.96b) P{Zz}=0.2Φ(z)=0.2/2=0.1z0.25c) P{Zz}=0.25Φ(z)=0.25/2=0.125z0.32d) P{Zz}=0.9P{Zz}=0.90.5P{Zz}=0.4Φ(z)=0.4z1.28The answer is 1.28.e) P{0Zz}=0.41Φ(z)=0.41z1.34f) P{zZz}=0.88Φ(z)=0.44z1.55\text{Using the table of the values of Laplace function }\\ \Phi(z)=\frac{1}{\sqrt{2\pi}}\int_0^z e^{-\frac{t^2}{2}}dt\text{ we get:}\\ a)\ P\{Z\leq z^*\}=0.95\\ \Phi(z^*)=0.95/2=0.475\\ z^*\approx 1.96\\ b)\ P\{Z\leq z^*\}=0.2\\ \Phi(z^*)=0.2/2=0.1\\ z^*\approx 0.25\\ c)\ P\{Z\leq z^*\}=0.25\\ \Phi(z^*)=0.25/2=0.125\\ z^*\approx 0.32\\ d)\ P\{Z\geq z^*\}=0.9\\ P\{Z\leq z^*\}=0.9-0.5\\ P\{Z\leq z^*\}=0.4\\ \Phi(z^*)=0.4\\ z^*\approx 1.28\\ \text{The answer is } \approx -1.28.\\ e)\ P\{0\leq Z\leq z^*\}=0.41\\ \Phi(z^*)=0.41\\ z^*\approx 1.34\\ f)\ P\{-z^*\leq Z\leq z^*\}=0.88\\ \Phi(z^*)=0.44\\ z^*\approx 1.55


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS