Use Cumulative Standardized Normal Probability table to find the value z* for which:
a) P( Z ≤ z*) = 0.95
b) P( Z ≤ z*) = 0.2
c) P( Z ≤ z*) = 0.25
d) P( Z ≥ z*) = 0.9
e) P( 0 ≤ Z ≤ z*) = 0.41
f) P( -z* ≤ Z ≤ z*) = 0.88
"\\text{Using the table of the values of Laplace function }\\\\\n\\Phi(z)=\\frac{1}{\\sqrt{2\\pi}}\\int_0^z e^{-\\frac{t^2}{2}}dt\\text{ we get:}\\\\\na)\\ P\\{Z\\leq z^*\\}=0.95\\\\\n\\Phi(z^*)=0.95\/2=0.475\\\\\nz^*\\approx 1.96\\\\\nb)\\ P\\{Z\\leq z^*\\}=0.2\\\\\n\\Phi(z^*)=0.2\/2=0.1\\\\\nz^*\\approx 0.25\\\\\nc)\\ P\\{Z\\leq z^*\\}=0.25\\\\\n\\Phi(z^*)=0.25\/2=0.125\\\\\nz^*\\approx 0.32\\\\\nd)\\ P\\{Z\\geq z^*\\}=0.9\\\\\nP\\{Z\\leq z^*\\}=0.9-0.5\\\\\nP\\{Z\\leq z^*\\}=0.4\\\\\n\\Phi(z^*)=0.4\\\\\nz^*\\approx 1.28\\\\\n\\text{The answer is } \\approx -1.28.\\\\\ne)\\ P\\{0\\leq Z\\leq z^*\\}=0.41\\\\\n\\Phi(z^*)=0.41\\\\\nz^*\\approx 1.34\\\\\nf)\\ P\\{-z^*\\leq Z\\leq z^*\\}=0.88\\\\\n\\Phi(z^*)=0.44\\\\\nz^*\\approx 1.55"
Comments
Leave a comment