Use Cumulative Standardized Normal Probability table to find the value z* for which:
a) P( Z ≤ z*) = 0.95
b) P( Z ≤ z*) = 0.2
c) P( Z ≤ z*) = 0.25
d) P( Z ≥ z*) = 0.9
e) P( 0 ≤ Z ≤ z*) = 0.41
f) P( -z* ≤ Z ≤ z*) = 0.88
1
Expert's answer
2021-03-11T14:08:23-0500
Using the table of the values of Laplace function Φ(z)=2π1∫0ze−2t2dt we get:a)P{Z≤z∗}=0.95Φ(z∗)=0.95/2=0.475z∗≈1.96b)P{Z≤z∗}=0.2Φ(z∗)=0.2/2=0.1z∗≈0.25c)P{Z≤z∗}=0.25Φ(z∗)=0.25/2=0.125z∗≈0.32d)P{Z≥z∗}=0.9P{Z≤z∗}=0.9−0.5P{Z≤z∗}=0.4Φ(z∗)=0.4z∗≈1.28The answer is ≈−1.28.e)P{0≤Z≤z∗}=0.41Φ(z∗)=0.41z∗≈1.34f)P{−z∗≤Z≤z∗}=0.88Φ(z∗)=0.44z∗≈1.55
Comments