Answer to Question #169035 in Statistics and Probability for Bikram Chaudhary

Question #169035

If 10% of a large consignments of eggs are bad, what is the probability distribution of the number of bad eggs in a box of half dozen chosen at random?


1
Expert's answer
2021-03-07T17:30:12-0500

p=0.1q=1p=0.9p = 0.1 \Rightarrow q = 1 - p = 0.9

Using the Bernoulli formula, we find the probabilities that there will be 0, 1, 2, 3, 4, 5 and 6 bad eggs, respectively:


P6(0)=q6=0.96=0.531441{P_6}\left( 0 \right) = {q^6} = {0.9^6} = {\rm{0}}{\rm{.531441}}


P6(1)=C61pq5=60.10.95=0.354294{P_6}\left( 1 \right) = C_6^1p{q^5} = 6 \cdot 0.1 \cdot {0.9^5} = {\rm{0}}{\rm{.354294}}


P6(2)=C62p2q4=150.120.94=0.098415{P_6}\left( 2 \right) = C_6^2{p^2}{q^4} = 15 \cdot {0.1^2} \cdot {0.9^4} = {\rm{0}}{\rm{.098415}}


P6(3)=C63p3q3=200.130.93=0.01458{P_6}\left( 3 \right) = C_6^3{p^3}{q^3} = 20 \cdot {0.1^3} \cdot {0.9^3} = {\rm{0}}{\rm{.01458}}


P6(4)=C64p4q2=150.140.92=0.001215{P_6}\left( 4 \right) = C_6^4{p^4}{q^2} = 15 \cdot {0.1^4} \cdot {0.9^2} = {\rm{0}}{\rm{.001215}}


P6(5)=C65p5q=60.150.9=0.000054{P_6}\left( 5 \right) = C_6^5{p^5}q = 6 \cdot {0.1^5} \cdot 0.9 = {\rm{0}}{\rm{.000054}}


P6(6)=p6=0.16=0,000001{P_6}\left( 6 \right) = {p^6} = {0.1^6} = {\rm{0}}{\rm{,000001}}


We have the probability distribution:


X0123456p0.5314410.3542940.0984150.014580.0012150.0000540,000001\begin{matrix} X&0&1&2&3&4&5&6\\ p&{{\rm{0}}{\rm{.531441}}}&{{\rm{0}}{\rm{.354294}}}&{{\rm{0}}{\rm{.098415}}}&{{\rm{0}}{\rm{.01458}}}&{{\rm{0}}{\rm{.001215}}}&{{\rm{0}}{\rm{.000054}}}&{{\rm{0}}{\rm{,000001}}} \end{matrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment