We have that
P(A)=0.3
P(Bˉ∣A)=0.1
P(B∣Aˉ)=0.2
Need to find P(A∣B) and P(A∣Bˉ)
The probability tree:
P(Aˉ)=1−P(A)=1−0.3=0.7
P(B∣A)=1−P(Bˉ∣A)=1−0.1=0.9
P(Bˉ∣Aˉ)=1−P(B∣Aˉ)=1−0.2=0.8
To find P(A∣B) and P(A∣Bˉ) we need to use Bayes theorem:
P(A∣B)=P(B)P(B∣A)P(A)=P(B∣A)P(A)+P(B∣Aˉ)P(Aˉ)P(B∣A)P(A)=0.9⋅0.3+0.2⋅0.70.9⋅0.3=0.66
P(A∣Bˉ)=P(Bˉ)P(Bˉ∣A)P(A)=P(Bˉ∣A)P(A)+P(Bˉ∣Aˉ)P(Aˉ)P(Bˉ∣A)P(A)=0.1⋅0.3+0.8⋅0.70.1⋅0.3=0.05
Comments
Leave a comment