https://v2uploads.zopim.io/3/D/U/3DU1LvpXneDcvZQXL0DY6SvGO56nSwAt/8100b1bda96d5f7658b046202cd87948c7bb9212.png
We have that
"P(A)=0.3"
"P(\\bar B |A)=0.1"
"P(B|\\bar A)=0.2"
Need to find "P(A|B)" and "P(A|\\bar B)"
The probability tree:
"P(\\bar A)= 1 - P(A)=1-0.3=0.7"
"P(B|A)=1-P(\\bar B|A)=1-0.1=0.9"
"P(\\bar B|\\bar A)=1-P(B|\\bar A)=1-0.2=0.8"
To find "P(A|B)" and "P(A|\\bar B)" we need to use Bayes theorem:
"P(A|B)=\\frac{P(B|A)P(A)}{P(B)}=\\frac{P(B|A)P(A)}{P(B|A)P(A)+P(B|\\bar A)P(\\bar A)}=\\frac{0.9\\cdot 0.3}{0.9\\cdot 0.3+0.2 \\cdot 0.7}=0.66"
"P(A|\\bar B)=\\frac{P(\\bar B|A)P(A)}{P(\\bar B)}=\\frac{P(\\bar B|A)P(A)}{P(\\bar B|A)P(A)+P(\\bar B|\\bar A)P(\\bar A)}=\\frac{0.1\\cdot 0.3}{0.1\\cdot 0.3+0.8 \\cdot 0.7}=0.05"
Comments
Leave a comment