Answer to Question #166849 in Statistics and Probability for nimesh

Question #166849

https://v2uploads.zopim.io/3/D/U/3DU1LvpXneDcvZQXL0DY6SvGO56nSwAt/8100b1bda96d5f7658b046202cd87948c7bb9212.png


1
Expert's answer
2021-02-28T17:25:02-0500

We have that

P(A)=0.3P(A)=0.3

P(BˉA)=0.1P(\bar B |A)=0.1

P(BAˉ)=0.2P(B|\bar A)=0.2

Need to find P(AB)P(A|B) and P(ABˉ)P(A|\bar B)

The probability tree:




P(Aˉ)=1P(A)=10.3=0.7P(\bar A)= 1 - P(A)=1-0.3=0.7

P(BA)=1P(BˉA)=10.1=0.9P(B|A)=1-P(\bar B|A)=1-0.1=0.9

P(BˉAˉ)=1P(BAˉ)=10.2=0.8P(\bar B|\bar A)=1-P(B|\bar A)=1-0.2=0.8

To find P(AB)P(A|B) and P(ABˉ)P(A|\bar B) we need to use Bayes theorem:

P(AB)=P(BA)P(A)P(B)=P(BA)P(A)P(BA)P(A)+P(BAˉ)P(Aˉ)=0.90.30.90.3+0.20.7=0.66P(A|B)=\frac{P(B|A)P(A)}{P(B)}=\frac{P(B|A)P(A)}{P(B|A)P(A)+P(B|\bar A)P(\bar A)}=\frac{0.9\cdot 0.3}{0.9\cdot 0.3+0.2 \cdot 0.7}=0.66

P(ABˉ)=P(BˉA)P(A)P(Bˉ)=P(BˉA)P(A)P(BˉA)P(A)+P(BˉAˉ)P(Aˉ)=0.10.30.10.3+0.80.7=0.05P(A|\bar B)=\frac{P(\bar B|A)P(A)}{P(\bar B)}=\frac{P(\bar B|A)P(A)}{P(\bar B|A)P(A)+P(\bar B|\bar A)P(\bar A)}=\frac{0.1\cdot 0.3}{0.1\cdot 0.3+0.8 \cdot 0.7}=0.05

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment