x [ W T ] f [ N O P ] x ′ = x i − 1 + x i 2 x[WT]\ \ \ f[NOP] \ \ x'=\frac{x_{i-1}+x_{i}}{2} x [ W T ] f [ NOP ] x ′ = 2 x i − 1 + x i
( 0 ; 3 ) 210 1.5 (0;3)\qquad210\qquad1.5 ( 0 ; 3 ) 210 1.5
( 3 ; 6 ) 130 4.5 (3;6)\qquad130\qquad4.5 ( 3 ; 6 ) 130 4.5
( 6 ; 9 ) 75 7.5 (6;9)\qquad75\qquad\ \ 7.5 ( 6 ; 9 ) 75 7.5
( 9 ; 12 ) 40 10.5 (9;12)\quad\ \ 40\qquad\ \ 10.5 ( 9 ; 12 ) 40 10.5
( 12 ; 15 ) 20 13.5 (12;15)\quad 20\qquad\ \ 13.5 ( 12 ; 15 ) 20 13.5
( 15 ; 18 ) 15 16.5 (15;18)\quad 15\qquad\ \ 16.5 ( 15 ; 18 ) 15 16.5
( 18 ; 21 ) 10 18.5 (18;21)\quad 10\qquad\ \ 18.5 ( 18 ; 21 ) 10 18.5
Σ f i = 210 + 130 + 75 + 40 + 20 + 15 + 10 = 500 \Sigma{f_i}=210+130+75+40+20+15+10=500 Σ f i = 210 + 130 + 75 + 40 + 20 + 15 + 10 = 500
Accumulated frequency , S : \text{Accumulated frequency}, S: Accumulated frequency , S :
210 340 415 455 475 490 500 210\ 340\ \ 415\ 455\ \ 475\ 490\ 500 210 340 415 455 475 490 500
a ) x ˉ = Σ x i ′ f i Σ f i a)\bar{x}=\frac{\Sigma{x_i'f_i}}{\Sigma{f_i}} a ) x ˉ = Σ f i Σ x i ′ f i
x ˉ = 210 ∗ 1.5 + 130 ∗ 4.5 + 75 ∗ 7.5 + 40 ∗ 10.5 + 20 ∗ 13.5 + 15 ∗ 16.5 + 10 ∗ 18.5 210 + 130 + 75 + 40 + 20 + 15 + 10 = 5.19 \bar{x}=\frac{210*1.5+130*4.5+75*7.5+40*10.5+20*13.5+15*16.5+10*18.5}{210+130+75+40+20+15+10}=5.19 x ˉ = 210 + 130 + 75 + 40 + 20 + 15 + 10 210 ∗ 1.5 + 130 ∗ 4.5 + 75 ∗ 7.5 + 40 ∗ 10.5 + 20 ∗ 13.5 + 15 ∗ 16.5 + 10 ∗ 18.5 = 5.19
b ) D = Σ f i ( x i ′ − x ˉ ) 2 Σ f i b)D=\frac{\Sigma{f_i}(x'_{i}-\bar{x})^2}{\Sigma{f_i}} b ) D = Σ f i Σ f i ( x i ′ − x ˉ ) 2
x ˉ = 210 ∗ ( 1.5 − 5.17 ) 2 + 130 ∗ ( 4.5 − 5.17 ) 2 + 75 ∗ ( 7.5 − 5.17 ) 2 500 + + 40 ∗ ( 10.5 − 5.17 ) 2 + 20 ∗ ( 13.5 − 5.17 ) 2 + 15 ∗ ( 16.5 − 5.17 ) 2 + 10 ∗ ( 18.5 − 5.17 ) 2 500 = 19.04 \bar{x}=\frac{210*(1.5-5.17)^2+130*(4.5-5.17)^2+75*(7.5-5.17)^2}{500}+\newline
+\frac{40*(10.5-5.17)^2+20*(13.5-5.17)^2+15*(16.5-5.17)^2+10*(18.5-5.17)^2}{500}=19.04 x ˉ = 500 210 ∗ ( 1.5 − 5.17 ) 2 + 130 ∗ ( 4.5 − 5.17 ) 2 + 75 ∗ ( 7.5 − 5.17 ) 2 + + 500 40 ∗ ( 10.5 − 5.17 ) 2 + 20 ∗ ( 13.5 − 5.17 ) 2 + 15 ∗ ( 16.5 − 5.17 ) 2 + 10 ∗ ( 18.5 − 5.17 ) 2 = 19.04
c ) V ˉ = D x ˉ ∗ 100 % = 19.5 5.19 ∗ 100 % = 85 % c)\bar{V}=\frac{\sqrt{D}}{\bar{x}}*100\%=\frac{\sqrt{19.5}}{5.19}*100\%=85\% c ) V ˉ = x ˉ D ∗ 100% = 5.19 19.5 ∗ 100% = 85%
d ) The median is the interval (3;6) hence d)\text{The median is the interval (3;6) hence} d ) The median is the interval (3;6) hence
S ( 3 ; 6 ) = 340 > Σ f i S_{(3;6)}=340>\Sigma{f_i} S ( 3 ; 6 ) = 340 > Σ f i
M e = x 0 + h f m e ( Σ f i 2 − S m e − 1 ) = 3 + 3 130 ( 500 2 − 210 ) = 3.92 M_e= x_0+\frac{h}{f_{me}}(\Sigma\frac{f_i}{2}-S_{me-1})=3+\frac{3}{130}(\frac{500}{2}-210)=3.92 M e = x 0 + f m e h ( Σ 2 f i − S m e − 1 ) = 3 + 130 3 ( 2 500 − 210 ) = 3.92
e ) interval 0, this interval contains the largest number of features e)\text{interval 0, this interval contains the largest number of features} e ) interval 0, this interval contains the largest number of features
M 0 = x 0 + h f 2 − f 1 ( f 2 − f 1 ) − ( f 3 − f 2 ) = 0 + 3 210 − 0 ( 210 − 0 ) − ( 210 − 130 ) = 2.17 M_0=x_0+h\frac{f_2-f_1}{(f2-f_1)-(f_3-f_2)}=0+3\frac{210-0}{(210-0)-(210-130)}=2.17 M 0 = x 0 + h ( f 2 − f 1 ) − ( f 3 − f 2 ) f 2 − f 1 = 0 + 3 ( 210 − 0 ) − ( 210 − 130 ) 210 − 0 = 2.17
f ) Q 3 = x Q 3 + h Q 3 0.75 Σ f i − S Q 3 − 1 f Q 3 = 6 + 3 ∗ 0.75 ∗ 500 − 340 75 = 7.4 f)Q_3=x_{Q_3}+h_{Q_3}\frac{0.75\Sigma{f_i-S_{Q_3-1}}}{f_{Q_3}}=6+3*\frac{0.75*500-340}{75}=7.4 f ) Q 3 = x Q 3 + h Q 3 f Q 3 0.75Σ f i − S Q 3 − 1 = 6 + 3 ∗ 75 0.75 ∗ 500 − 340 = 7.4
h ) i n d e x = 7 ∗ 0.4 = 2.8 ≈ 3 h)index = 7*0.4 =2.8\approx3 h ) in d e x = 7 ∗ 0.4 = 2.8 ≈ 3
fortieth percentile = 20 \text{fortieth percentile }= 20 fortieth percentile = 20
Comments