Question #162234

1.    A country town installs 2000 new electric lights in a new housing estate. These lamps have an average life of 1000 hours with a standard deviation of 200 hours. Hint: Draw and label a normal “bell-shaped” curve to help answer this?

 

a)   What percentage of bulbs would be expected to fail between 800 hours and 1200 hours?

b)   How many bulbs would this be?

c) How many bulbs would be expected to last longer than 1600 hours


1
Expert's answer
2021-02-24T12:24:31-0500

Let XX be a random variable denotes the life of electric bulb.

Then by the given conditions everage life of electric bulb is 10001000 hours and standard deviation of 200200 hours.

Therefore μ=1000\mu =1000 and σ=200\sigma =200

Here XX is normally distributed.

Let Z=XμσZ=\frac{X-\mu}{\sigma} .Then Z=X1000200Z=\frac{X-1000}{200}.

(a) First we have to find the probability of the life of electric bulb lie between 800800 hours and 12001200 hours.

P(800<X<1200)=P(800100200<Z<1200100200)\therefore P(800<X<1200)=P(\frac{800-100}{200}<Z<\frac{1200-100}{200})

=P(1<Z<1)=P(-1<Z<1)

=2×P(0<Z<1)=2×P(0<Z<1)

=2×0.3413=0.6826=2×0.3413=0.6826 [from normal distribution table]

Therefore probability of bulbs expected to fail between 800800 hours and 10001000 hours is =(10.6876)=0.3174=(1-0.6876)=0.3174

\therefore Percentage of bulbs would be expected to fail between 800800 hours and 10001000 hours is =32=32 (approximately)

(b) There are 20002000 new bulbs.

Therefore the number of bulbs would be expected to fail between 800800 hours and 10001000 hours is =(2000×0.3174)=63=(2000×0.3174)=63 (approximately).

(c) Probability of life of bulbs expected to last longer than 1600 hours is P(X>1600).P(X>1600).

P(X>1600)=P(Z>16001000200)\therefore P(X>1600)=P(Z>\frac{1600-1000}{200})

=P(Z>3)=P(Z>3)

=0.5P(0Z3)=0.5-P(0\leq Z\leq 3)

=0.50.4987=0.5-0.4987

=0.0013=0.0013 (approximately)

Therefore number of bulbs would be expected to last longer than 16001600 hours is =(2000×0.0013)=3=(2000×0.0013)=3 (approximately)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS