The time taken to pluck the tea leaves in a certain plantation has a normal distribution with mean of 25 hours per week and a standard deviation of 4 hours. Calculate the probability that the tea leaves can be plucked at this plantation in the following period of time:
a) More than 30 hours
[3 marks]
b) Between 18 and 34 hours
[4 marks]
c) Between 25 and 34 hours
μ=25, σ=4,\mu= 25,~\sigma=4,μ=25, σ=4,
Z=t−μσ,Z=\frac{t-\mu}{\sigma},Z=σt−μ,
1)
P(t>30)=1−P(Z≤30−254)=1−P(Z≤1.25)=1−0.8944=0.1056,P(t>30)=1-P(Z\leq\frac{30-25}{4})=\\ 1-P(Z\leq1.25)=1-0.8944=0.1056,P(t>30)=1−P(Z≤430−25)=1−P(Z≤1.25)=1−0.8944=0.1056,
2)
P(18<t<34)=P(Z≤34−254)−P(Z≤18−254)=P(Z≤2.25)−P(Z≤−1.75)=0.9878−0.0401=0.9477,P(18<t<34)= P(Z≤ \frac{ 34−25}{4} )−P(Z≤ \frac{ 18−25}{4} )=P(Z≤ 2.25)−P(Z≤ -1.75)= 0.9878−0.0401=0.9477,P(18<t<34)=P(Z≤434−25)−P(Z≤418−25)=P(Z≤2.25)−P(Z≤−1.75)=0.9878−0.0401=0.9477,
3)
P(25<t<34)=P(Z≤34−254)−P(Z≤25−254)=P(Z≤2.25)−P(Z≤0)=0.9878−0.5=0.4878.P(25<t<34)= P(Z≤ \frac{ 34−25}{4} )−P(Z≤ \frac{ 25−25}{4} )=P(Z≤ 2.25 )−P(Z≤ 0)= 0.9878−0.5=0.4878.P(25<t<34)=P(Z≤434−25)−P(Z≤425−25)=P(Z≤2.25)−P(Z≤0)=0.9878−0.5=0.4878.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments