The probability function f(x)={3x2,   0<x<10,  otherwise 
a. The CDF of X: F(x)=P(X≤x)=−∞∫xf(t)dt 
If x≤0:  F(x)=−∞∫x0dt=0 
If 0<x<1 :  F(x)=0∫x3t2dt=t3∣∣0x=x3 
If 1≤x : F(x)=0∫13t2dt=t3∣∣01=1 
F(x)=⎩⎨⎧0,  x≤0x3,  0<x<11,  1≤x 
b. P(X<0.5)=F(0.5)=(0.5)3=0.125 
c. E(x)=−∞∫+∞xf(x)dx=0∫13x3dx=43x4∣∣01=43 
Answer:
a. F(x)=⎩⎨⎧0,  x≤0x3,  0<x<11,  1≤x 
b. P(X<0.5)=0.125 
c. E(x)=43 
Comments