The probability function f(x)={3x2, 0<x<10, otherwise
a. The CDF of X: F(x)=P(X≤x)=−∞∫xf(t)dt
If x≤0: F(x)=−∞∫x0dt=0
If 0<x<1 : F(x)=0∫x3t2dt=t3∣∣0x=x3
If 1≤x : F(x)=0∫13t2dt=t3∣∣01=1
F(x)=⎩⎨⎧0, x≤0x3, 0<x<11, 1≤x
b. P(X<0.5)=F(0.5)=(0.5)3=0.125
c. E(x)=−∞∫+∞xf(x)dx=0∫13x3dx=43x4∣∣01=43
Answer:
a. F(x)=⎩⎨⎧0, x≤0x3, 0<x<11, 1≤x
b. P(X<0.5)=0.125
c. E(x)=43
Comments