Question #158181

For the random variable X with the probability function below, answer the following questions.

f(x)= { 3x^2 , 0<x<1

{ 0, otherwise

a. Find the cdf of X.

b. Find the probability that X is less than 0.5.

c. Find E(X).


1
Expert's answer
2021-01-26T04:32:35-0500

The probability function f(x)={3x2,   0<x<10,  otherwisef(x)=\begin{cases} 3x^2,\ \ \ 0<x<1 \\0, \ \ \text{otherwise} \end{cases}

a. The CDF of X: F(x)=P(Xx)=xf(t)dtF(x)=P(X\leq x)=\int\limits _{-\infin}^x f(t)dt

If x0:x\leq 0: F(x)=x0dt=0F(x)= \int\limits _{-\infin}^x 0dt =0

If 0<x<10<x<1 : F(x)=0x3t2dt=t30x=x3F(x)= \int\limits _{0}^x 3t^2dt =t^3\big|^x_0=x^3

If 1x1\leq x : F(x)=013t2dt=t301=1F(x)= \int\limits _{0}^1 3t^2dt =t^3\big|^1_0=1

F(x)={0,  x0x3,  0<x<11,  1xF(x)=\begin{cases} 0,\ \ x\leq 0 \\ x^3,\ \ 0<x<1 \\ 1,\ \ 1\leq x \end{cases}


b. P(X<0.5)=F(0.5)=(0.5)3=0.125P(X<0.5)= F(0.5)=(0.5)^3=0.125

c. E(x)=+xf(x)dx=013x3dx=34x401=34E(x)=\int\limits _{-\infin}^{+\infin}xf(x)dx=\int\limits _0^1 3x^3dx=\frac{3}{4}x^4\big|^1_0=\frac{3}{4}


Answer:

a. F(x)={0,  x0x3,  0<x<11,  1xF(x)=\begin{cases} 0,\ \ x\leq 0 \\ x^3,\ \ 0<x<1 \\ 1,\ \ 1\leq x \end{cases}

b. P(X<0.5)=0.125P(X<0.5)=0.125

c. E(x)=34E(x)=\frac{3}{4}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS