For the random variable X defined by the probability function below, answer the following questions.
x 2 3 4 5 6 7
f(x) 0.25 0.15 0.10 0.15 0.10 0.25
a. Find the probability that X is even or at least 7.
b. Find and sketch the cdf.
c. Find the expected value and variance of X.
d. Find the expected value and variance of Y=2X+3.
a.
"P(even\\ \\cup\\ \\geq7)=0.25+0.10+0.1+0.25=0.7"b.
"F(3)=f(2)+f(3)=0.25+0.15=0.4"
"F(4)=f(2)+f(3)+f(4)=0.25+0.15+0.10"
"=0.5"
"F(5)=f(2)+f(3)+f(4)+f(5)"
"=0.25+0.15+0.10+0.15=0.65"
"F(6)=f(2)+f(3)+f(4)+f(5)+f(6)"
"=0.25+0.15+0.10+0.15+0.10=0.75"
"=0.25+0.15+0.10+0.15+0.10+0.25=1"
Hence
c.
"+6(0.10)+7(0.25)=4.45"
"E(X^2)=2^2(0.25)+3^2(0.15)+4^2(0.10)"
"+5^2(0.15)+6^2(0.10)+7^2(0.25)=23.55"
"Var(X)=E(X^2)-(E(X))^2=23.55-(4.45)^2"
"=3.7475"
d. "Y=2X+3"
"=2(4.45)+3=11.9"
"Var(Y)=Var(2X+3)=2^2Var(X)"
"=4(3.7475)=14.99"
Comments
Leave a comment