(i) Let "Y=" the length of rod: "Y\\sim N(x, \\sigma^2)." Then "Z=\\dfrac{Y-x}{\\sigma}\\sim N(0, 1)"
Given "\\sigma=6\\ cm."
"=1-P(Z\\leq\\dfrac{82-x}{6})=0.0478"
"P(Z\\leq\\dfrac{82-x}{6})=0.9522"
"\\dfrac{82-x}{6}\\approx1.66657"
"x\\approx72"
"mean=x=72"
(ii)
"P(x-\\dfrac{s}{2}<Y<x+\\dfrac{s}{2})""=P(Y<x+\\dfrac{s}{2})-P(Y\\leq x-\\dfrac{s}{2})="
"=P(Z<\\dfrac{\\dfrac{s}{2}}{6})-P(Z\\leq\\dfrac{-\\dfrac{s}{2}}{6})=0.75"
"P(Z\\leq-\\dfrac{s}{12})=\\dfrac{1-0.75}{2}"
"-\\dfrac{s}{12}\\approx-1.15035"
"s\\approx13.0842"
(iii)
"=P(Z<\\dfrac{72-72}{6})-P(Z\\leq\\dfrac{62-72}{6})"
"=P(Z<0)-P(Z\\leq-\\dfrac{5}{3})\\approx0.5-0.04779"
"=0.45221"
The probability that a rod chosen at random has a length between 62cm and 72cm is 0.45221.
Comments
Leave a comment