(i) Let Y= the length of rod: Y∼N(x,σ2). Then Z=σY−x∼N(0,1)
Given σ=6 cm.
P(Y>82)=1−P(Y≤82)
=1−P(Z≤682−x)=0.0478
P(Z≤682−x)=0.9522
682−x≈1.66657
x≈72 mean=x=72
(ii)
P(x−2s<Y<x+2s)
=P(Y<x+2s)−P(Y≤x−2s)=
=P(Z<62s)−P(Z≤6−2s)=0.75
P(Z≤−12s)=21−0.75
−12s≈−1.15035
s≈13.0842(iii)
P(62<Y<72)=P(Y<72)−P(Y≤62)
=P(Z<672−72)−P(Z≤662−72)
=P(Z<0)−P(Z≤−35)≈0.5−0.04779
=0.45221The probability that a rod chosen at random has a length between 62cm and 72cm is 0.45221.
Comments