Let "X=" the number of defective computers purchased.
There are "15-5=10" working microcomputers.
There are "^{15}C_4=\\dbinom{15}{4}=\\dfrac{15!}{4!(15-4)!}=\\dfrac{15(14)(13)(12)}{1(2)(3)(4)}=1365" ways to select 4 computers.
"P(X=1)=\\dfrac{^{5}C_1\\cdot^{10}C_3}{^{15}C_4}=\\dfrac{5\\cdot210}{1365}=\\dfrac{40}{91}"
"P(X=3)=\\dfrac{^{5}C_3\\cdot^{10}C_1}{^{15}C_4}=\\dfrac{10\\cdot10}{1365}=\\dfrac{20}{273}"
"P(X=4)=\\dfrac{^{5}C_4\\cdot^{10}C_0}{^{15}C_4}=\\dfrac{5\\cdot1}{1365}=\\dfrac{1}{273}"
Check
"\\begin{matrix}\n x & 0 & 1 & 2 & 3 & 4 \\\\\n\\\\\n p(x) & \\dfrac{2}{13} & \\dfrac{40}{91} & \\dfrac{30}{91} & \\dfrac{20}{273} & \\dfrac{1}{273}\n\\end{matrix}"
"+4\\cdot\\dfrac{1}{273}=\\dfrac{4}{3}"
"E(X)=\\dfrac{4}{3}"
Comments
Leave a comment