Question #151679
A shipment of 15 similar microcomputers to a retail outlet contains 5
that are defective. If a school makes a random purchase of 4 of these
computers, find the probability distribution and the expectation for the
number of defective items.
1
Expert's answer
2020-12-17T19:18:41-0500

Let X=X= the number of defective computers purchased. 

There are 155=1015-5=10  working microcomputers.

There are 15C4=(154)=15!4!(154)!=15(14)(13)(12)1(2)(3)(4)=1365^{15}C_4=\dbinom{15}{4}=\dfrac{15!}{4!(15-4)!}=\dfrac{15(14)(13)(12)}{1(2)(3)(4)}=1365 ways to select 4 computers.


P(X=0)=5C010C415C4=12101365=213P(X=0)=\dfrac{^{5}C_0\cdot^{10}C_4}{^{15}C_4}=\dfrac{1\cdot210}{1365}=\dfrac{2}{13}

P(X=1)=5C110C315C4=52101365=4091P(X=1)=\dfrac{^{5}C_1\cdot^{10}C_3}{^{15}C_4}=\dfrac{5\cdot210}{1365}=\dfrac{40}{91}


P(X=2)=5C210C215C4=10451365=3091P(X=2)=\dfrac{^{5}C_2\cdot^{10}C_2}{^{15}C_4}=\dfrac{10\cdot45}{1365}=\dfrac{30}{91}

P(X=3)=5C310C115C4=10101365=20273P(X=3)=\dfrac{^{5}C_3\cdot^{10}C_1}{^{15}C_4}=\dfrac{10\cdot10}{1365}=\dfrac{20}{273}

P(X=4)=5C410C015C4=511365=1273P(X=4)=\dfrac{^{5}C_4\cdot^{10}C_0}{^{15}C_4}=\dfrac{5\cdot1}{1365}=\dfrac{1}{273}

Check


213+4091+3091+20273+1273=1\dfrac{2}{13}+\dfrac{40}{91}+\dfrac{30}{91}+\dfrac{20}{273}+\dfrac{1}{273}=1

x01234p(x)21340913091202731273\begin{matrix} x & 0 & 1 & 2 & 3 & 4 \\ \\ p(x) & \dfrac{2}{13} & \dfrac{40}{91} & \dfrac{30}{91} & \dfrac{20}{273} & \dfrac{1}{273} \end{matrix}


E(X)=0213+14091+23091+320273E(X)=0\cdot\dfrac{2}{13}+1\cdot\dfrac{40}{91}+2\cdot\dfrac{30}{91}+3\cdot\dfrac{20}{273}

+41273=43+4\cdot\dfrac{1}{273}=\dfrac{4}{3}

E(X)=43E(X)=\dfrac{4}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS