"1.\\ s=\\sqrt{\\frac{\\sum(x_i-\\overline{x})^2}{n-1}}\\text{ --- sample variance}.\\\\\n\\text{Using Excel (STDEV.S function) we can compute that } s\\approx 6.4660.\\\\\n\\overline{x}=\\frac{41}{7}\\\\\n\\text{Critical value } t_{0.05}\\approx 2.4469\\text{ (we use t-distribution table)}\\\\\n\\text{We have:}\\\\\n(41\/7-(2.4469)(\\frac{6.4660}{\\sqrt{7}}),41\/7+(2.4469)(\\frac{6.4660}{\\sqrt{7}}))\\\\\n(-0.1229,11.8372)\\\\\n2.\\ s=\\sqrt{\\frac{\\sum(x_i-\\overline{x})^2}{n-1}}\\text{ --- sample variance}.\\\\\n\\text{Using Excel (STDEV.S function) we can compute that } s\\approx 2.1602.\\\\\n\\overline{x}=4\\\\\n\\text{Critical value } t_{0.05}\\approx 2.4469\\text{ (we use t-distribution table)}\\\\\n\\text{We have:}\\\\\n(4-(2.4469)(\\frac{2.1602}{\\sqrt{7}}),4+(2.4469)(\\frac{2.1602}{\\sqrt{7}}))\\\\\n(2.0022,5.9978)\\\\\n3.\\ \\text{The confidence interval is wider in the first case}\\\\\n\\text{because of the outlier 20}."
Comments
Leave a comment