Question #145188
Considering the 5,800 enrollees in the College of Education, a researcher would like to make a study with 97.25% precision. How many samples must be taken?
1
Expert's answer
2020-11-18T18:50:00-0500

We build 97.25% confidence interval for population mean or population proportion. This confidence interval covers population mean or population proportion with the probability 97.25%.

If we build 97.25% confidence interval for population mean:

Lower limit = Mz1.375σMM-z_{1.375}\sigma_M

Upper limit = M+z1.375σMM+z_{1.375}\sigma_M

Margin of error ME=z1.375σMME=z_{1.375}\sigma_M

σM=σN\sigma_M=\frac{\sigma}{\sqrt{N}}

M — sample meanσ — population standard deviationN — sample sizez1.3750.0838 — the corresponding critical valueM\text{ --- sample mean}\\ \sigma\text{ --- population standard deviation}\\ N\text{ --- sample size}\\ z_{1.375}\approx 0.0838\text{ --- the corresponding critical value}

Then we have:

N=z1.3752σ2ME2N=\frac{z_{1.375}^2\sigma^2}{ME^2}

If we build 97.25% confidence interval for population proportion:

N=z1.3752p(1p)ME2N=\frac{z_{1.375}^2p(1-p)}{ME^2}

p — estimated proportion of the population whichhas the attribute in question.p\text{ --- estimated proportion of the population which}\\ \text{has the attribute in question}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS