"1. \\text{ Partial correlation coefficient between } x_1 \\text{ and } x_2\\\\\n\\text{keeping }x_3\\text{ as const}:\\\\\nr_{12.3}=\\frac{r_{12}-r_{13}r_{23}}{\\sqrt{1-r_{13}^2}\\sqrt{1-r_{23}^2}}=\\frac{0.3-(0.18)(0.41)}{\\sqrt{1-0.18^2}\\sqrt{1-0.41^2}}\\approx 0.25.\\\\\n2. \\text{ Multiple correlation coefficient:}\\\\\nR_{1.23}=\\sqrt{\\frac{r_{12}^2+r_{13}^2-2r_{12}r_{13}r_{23}}{1-r_{23}^2}}=\\sqrt{\\frac{0.3^2+0.18^2-2(0.3)(0.18)(0.41)}{1-0.41^2}}\\approx 0.31.\\\\\nR_{2.13}=\\sqrt{\\frac{r_{12}^2+r_{23}^2-2r_{12}r_{23}r_{13}}{1-r_{13}^2}}=\\sqrt{\\frac{0.3^2+0.41^2-2(0.3)(0.41)(0.18)}{1-0.18^2}}\\approx 0.47."
Comments
Leave a comment