Question #144996
If r 12 =0.3, r 23 = 0.41, r 31 =0.18, find the partial correlation coefficient
between x 1 and x 2 keeping x 3 as constant. Find the multiple correlation
coefficient R 1.23 , R 2.13
1
Expert's answer
2020-11-22T18:01:34-0500

1. Partial correlation coefficient between x1 and x2keeping x3 as const:r12.3=r12r13r231r1321r232=0.3(0.18)(0.41)10.18210.4120.25.2. Multiple correlation coefficient:R1.23=r122+r1322r12r13r231r232=0.32+0.1822(0.3)(0.18)(0.41)10.4120.31.R2.13=r122+r2322r12r23r131r132=0.32+0.4122(0.3)(0.41)(0.18)10.1820.47.1. \text{ Partial correlation coefficient between } x_1 \text{ and } x_2\\ \text{keeping }x_3\text{ as const}:\\ r_{12.3}=\frac{r_{12}-r_{13}r_{23}}{\sqrt{1-r_{13}^2}\sqrt{1-r_{23}^2}}=\frac{0.3-(0.18)(0.41)}{\sqrt{1-0.18^2}\sqrt{1-0.41^2}}\approx 0.25.\\ 2. \text{ Multiple correlation coefficient:}\\ R_{1.23}=\sqrt{\frac{r_{12}^2+r_{13}^2-2r_{12}r_{13}r_{23}}{1-r_{23}^2}}=\sqrt{\frac{0.3^2+0.18^2-2(0.3)(0.18)(0.41)}{1-0.41^2}}\approx 0.31.\\ R_{2.13}=\sqrt{\frac{r_{12}^2+r_{23}^2-2r_{12}r_{23}r_{13}}{1-r_{13}^2}}=\sqrt{\frac{0.3^2+0.41^2-2(0.3)(0.41)(0.18)}{1-0.18^2}}\approx 0.47.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS