Solution:
Face to Face Class
"Mean, \\mu_1 = {\\sum f1x \\over \\sum f1}""= {3700 \\over 100} = 37""var , \\sigma_1 ^2 = {\\sum f1{(x- \\mu)}^2 \\over \\sum f1}""={26600 \\over 100}= 266"
On-line Class
"=Mean, \\mu_2 = {\\sum f2x \\over \\sum f2}""= {6000 \\over 170} = 35.2941""var , \\sigma_2 ^2 = {\\sum f2{(x- \\mu)}^2 \\over \\sum f2}""= {46485.29412 \\over 170} = 273.4429"
Hypothesis Testing.
"H_0 : \\mu_1 = \\mu_2" vs "H_1: \\mu_1 \\not = \\mu_2" at 5% level of significance
Test statistic:
"= {37 -35.2941 \\over \\sqrt{{266 \\over 100}+ {273.4429 \\over 170}}} = 0.8257"
Z0.025=1.96
Conclusion:
Since the calculated value of Z is less than the table value of Z, we fail to reject the null hypothesis. Therefore, the mean marks are statistically equal.
Confidence Interval.
"=(\\mu_1 - \\mu_2) \\pm Z_{\\alpha \\over2}{\\sqrt{{\\sigma_1^2 \\over n_1} + {\\sigma_2^2 \\over n_2}}}""=(37-35.2941) \\pm 1.96 \\sqrt{{266 \\over 100}+{273.4429 \\over 170}}"
"= 1.7059 \\pm 4.0494"
Ans: "-2.3435 \\le \\mu_1 -\\mu_2 \\le 5.7553"
Comments
Leave a comment