μ=25.1\mu=25.1μ=25.1
σ=3.2\sigma=3.2σ=3.2
P(21.2<X<23.4)=P(21.2−μσ<Z<23.4−μσ)=P(21.2<X<23.4)=P(\frac{21.2-\mu}{\sigma}<Z<\frac{23.4-\mu}{\sigma})=P(21.2<X<23.4)=P(σ21.2−μ<Z<σ23.4−μ)=
=P(21.2−25.13.2<Z<23.4−25.13.2)=P(−1.22<Z<−0.53)==P(\frac{21.2-25.1}{3.2}<Z<\frac{23.4-25.1}{3.2})=P(-1.22<Z<-0.53)==P(3.221.2−25.1<Z<3.223.4−25.1)=P(−1.22<Z<−0.53)=
=P(Z<−0.53)−P(Z<−1.22)=0.2981−0.1112=0.1869=P(Z<-0.53)-P(Z<-1.22)=0.2981-0.1112=0.1869=P(Z<−0.53)−P(Z<−1.22)=0.2981−0.1112=0.1869
Answer: 18.69% of individuals are selected between 21.2 and 23.4.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments