Let "X=" the number of particles emitted: "X\\sim Po(\\lambda t)"
"P(X=x)=\\dfrac{e^{-\\lambda t}(\\lambda t) ^x}{x!}, =0, 1, 2, ..." i. "\\lambda t=1"
"P(X\\geq2)=1-P(X=0)-P(X=1)=""=1-\\dfrac{e^{-1}\\cdot1^0}{0!}-\\dfrac{e^{-1}\\cdot1 ^1}{1!}=1-2e^{-1}"
i. "\\lambda t=1(2)=2"
"P(X\\geq2)=1-P(X=0)-P(X=1)=""=1-\\dfrac{e^{-2}\\cdot2^0}{0!}-\\dfrac{e^{-2}\\cdot2 ^1}{1!}=1-3e^{-2}"
"\\dfrac{1-2e^{-1}}{1-3e^{-2}}=\\dfrac{e^2-2e}{e^2-3}\\approx0.445"
"\\dfrac{1-3e^{-2}}{1-2e^{-1}}=\\dfrac{e^2-3}{e^2-2e}\\approx2.248"
Comments
Leave a comment