It's the binomial distribution:
"n=4, \\space \\space p = q = \\cfrac{1}{2}"
"Pr(x=k)= \\binom{4}{k} (\\cfrac{1}{2})^{k} \\cdot(1-\\cfrac{1}{2})^{4-k}=\\binom{4}{k} (\\cfrac{1}{2})^{4}=\\binom{4}{k} (\\cfrac{1}{16})" where "k" denotes number of heads.
Thus:
"Pr(x=0)= \\binom{4}{0} (\\cfrac{1}{16}) = \\cfrac{1}{16}"
"Pr(x=1)= \\binom{4}{1} (\\cfrac{1}{16}) = \\cfrac{4}{16}"
"Pr(x=2)= \\binom{4}{2} (\\cfrac{1}{16}) = \\cfrac{6}{16}"
"Pr(x=3)= \\binom{4}{3} (\\cfrac{1}{16}) = \\cfrac{4}{16}"
"Pr(x=4)= \\binom{4}{4} (\\cfrac{1}{16}) = \\cfrac{1}{16}"
Comments
Leave a comment